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MODELING FABRICATION OF NUCLEAR COMPONENTS:
AN INTEGRATIVE APPROACH
BY
KAREN WELLS HENCH

ABSTRACT

Reduction of the nuclear weapons stockpile and the general downsizing of the
nuclear weapons complex has presented challenges for Los Alamos. Oneisto
design an optimized fabrication facility to manufacture nuclear weapon primary
componentsin an environment of intense regulation and shrinking budgets.
This dissertation presents an integrative two-stage approach to modeling the
casting operation for fabrication of nuclear weapon primary components. The
first stage optimizes personnel radiation exposure for the casting operation
layout by modeling the operation as afacility layout problem formulated as a
quadratic assignment problem. The solution procedure uses an evolutionary
heuristic technique. The best solutions to the layout problem are used as input
to the second stage - asimulation model that assesses the impact of competing
layouts on operational performance. The focus of the simulation model isto
determine the layout that minimizes personnel radiation exposures and nuclear

material movement, and maximizes the utilization of capacity for finished units.



Chapter 1
INTRODUCTION

1.1  Background

The end of the Cold War has dramatically changed the role of the nuclear-weapon
stockpile and the associated research, devel opment, and testing of weapons by the national
laboratories. Formerly, nuclear deterrence was achieved by large-scale production and a
commensurate large-scale budget. The Strategic Arms Reduction Treaty (START) and
START Il called for reducing the strategic-weapons arsenals of the United States and the
former Soviet Union. The existing, reassembled, or retrofitted weapons in the enduring
stockpile will be stored indefinitely to ensure nuclear competency. The streamlined
weapons complex of the future will focus on long-term storage of nuclear material,
weapons dismantlement, and a modest fabrication and rebuild capability of weapons
components as a hedge against aging or degraded weapons in the stockpile. The
Department of Energy (DOE) has been tasked with ensuring the continued safety and
reliability of the weapons stockpile through the auspices of the Stockpile Stewardship and
Management Program [47]. This program will administer the activities related to the
research, design, development, and testing of nuclear weapons and the production and

mai ntenance of the weapons stockpile.



The Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL) is

currently the only operating facility in the nation with established R& D programs

that can be implemented on alarger scale to provide production capability for the
fabrication and recovery of plutonium. Ancillary activities such as waste recovery and
disposal, non-destructive assay, analytical chemistry, radiography, and transportation also
currently exist at LANL. Assuming afixed lifetimein yearsfor the nuclear portion of a
weapon, a specific number of weapons will have to be requalified/reused or manufactured
annually to maintain the weapon stockpile. The challenge for TA-55isto design an
optimized manufacturing facility that is capable of producing the needed quantity of nuclear
weapon primary components (pits) subject to the constraints imposed by oversight
organizations and funding sources. Reconfiguring the existing pit fabrication areaat TA-55
to accomodate the proposed level of production is estimated to cost $50M. Thisfigure
includes the decontamination and disposal of outdated equipment, installation of new
gloveboxes and equipment, and upgrade of existing gloveboxes.

Historically, the location of gloveboxesin a processing area has been determined
without benefit of industrial engineering studies to ascertain the optimal arrangement. The
opportunity exists for substantial cost savings and increased process efficiency through
careful study and optimization of the proposed layout by constructing a computer model of
the fabrication process. This dissertation presents an integrative approach to modeling a
nuclear primary component fabrication operation using a mathematical technique for the

formulation of the facility layout



problem and a simulation model to evaluate the impact that alternative layouts have on

performance measures.

1.2 Problem Definition

The existing pit fabrication areais located in one wing of TA-55, and occupies an
area on the order of 20,000 square feet. Operationslocated in the area are casting,
machining, non-destructive assay, assembly, inspection, and testing. The operations arein
fixed locations within the wing; however, individual processes within the operations can be
relocated to minimize exposure to technicians and to increase operationa efficiency.

The casting operation is performed in the foundry, and it is the operation considered
to present the highest radiation exposure hazard to radiation workers. The processes
located within the foundry have the most flexibility for relocation (at a cost) with respect to
the rest of the pit fabrication operations. All other factors being equal (complexity of
material flows, skill level of personnel, working hours, waste generation, and interim
storage), the casting operation represents the worst case of the pit fabrication operations.
The casting operation will be modeled, and the analysi s techniques developed can then be
applied to the remainder of the operations.

The foundry consists of two glovebox lines connected by asingle trolley system.
Each glovebox lineis divided into two trunklines, each with its own material transport

device. Thereare 17 possible locations on the glovebox linesto which 16



casting operations can be assigned. The conceptua arrangement of glovebox locations

within the foundry is shownin Figure 1.1.

1.3  Research Objectives

The goa of modeling the casting operation is to produce an optimal layout
configuration for the foundry. A configuration can be defined as a matching of afixed
number of processes to an equal number of locations within the foundry. The estimation
of personnel radiation exposures at a given capacity is of primary importance. An optimal
configuration will best utilize the resources available to maximize capacity and reduce
personnel exposures. An additional objective isthe determination of an optimal operating
strategy for the casting operation. Factorsinfluencing an operating policy include the
number of radiation workers that are required, the need for additional processing and
transportation equipment, and the need for additional storage.

Modeling the fabrication and recovery processes to determine the optimal layout and
operating strategy can best be accomplished in two stages. Thefirst stageisto model the
layout of the facility as a quadratic assignment problem and apply an optimization technique.
The optimization model iswell suited to determining alternative layouts that optimize
personnel radiation exposure. The second stage isto construct a ssimulation of the casting
operation using the best layout solutions from the optimization model in the first stage as

inputs. The objective of the smulation
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Figure 1.1 Arrangement of 17 gloveboxes in the foundry



model isto determine the layout that minimizes personnel radiation exposures and nuclear

material movement, and maximizes capacity.

1.4  Summary of Contributions

Simulation is the most commonly used method for studying the complex
interactions of operators, materials, and equipment in a stochastic environment. Simulation
allows an experimenter to estimate the performance of a system under competing
configurations in order to determine which combination of parameters resultsin an optimal
operating policy. However, using asimulation model alone to simultaneously evaluate the
performance of a complex system and optimize the operating parametersis not practical
because of the number of parameters. Optimization of process parameters and analysis of a
system operating under those parameters are two very different problems, each with their
own formulations, data requirements, and constraints. A better approach isto employ a
methodology that combines an optimization technique yielding [intelligent] solutions for
input to asimulation model that, subsequently, estimates the performance of the system
being studied. By iteratively generating a set of parameters and then studying the effect on
system response, the optimal operating strategy can be determined. The framework for the
modeling processisillustrated in Figure 1.2.

Our simulation results demonstrate the effectiveness (and feasibility) of applying an
integrative approach to modeling exposures and material flow through the foundry. The

optimization model produces a set of good layout configurations
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Figure 1.2 Framework for the modeling process

with only five seconds of execution time. Constructing asimilar set of layout solutions by
hand would require an enormous amount of time. Each solution is presented to the
simulation model which produces data on capacity, radiation exposures, utilization, and
bottlenecks. Analysis of smulation model results reveals the best arrangement of
processes in the casting operation when all the factors are considered. The methodol ogy
can be extended to any operation where process location isintegral to efficient use of

resources and communication between processes or facilities.

1.5  Organization of the Dissertation
Chapter 2 presents atutorial on criticality and radiation safety which are significant

factorsin handling nuclear material and integral components in the design



of both models. Chapter 3 is devoted to the discussion of the quadratic assignment
problem and its applicability to facility layout. This chapter details previous research into
the assignment of facilities to locations and concludes with the specific formulation for the
casting operation. Chapter 4 presents a literature survey of the fundamental components of
genetic algorithms (GAs) and their use as a solution methodology for the quadratic
assignment. The specific approach used in this dissertation is also discussed in this
chapter. Chapter 5 outlines the structure of the ssimulation and the statistical analyses that
are performed on the performance measures. Chapter 6 presents the results of the two
models. The efficacy of the genetic algorithm in producing feasible solutions isillustrated.
Finally, the results of the simulation model that incorporates the top 10 solutions are
presented. Conclusions about the feasibility and effectiveness of the dual-model approach

are contained in Chapter 7 aswell as a discussion of future research.



Chapter 2
CRITICALITY AND RADIATION SAFETY

21  Structureof the Atom

The three primary particles of an atom are protons, neutrons, and electrons. A
proton islocated in the nucleus and is a positively charged particle. The number of protons
in the nucleus determines the element. An electron is a negatively charged element that
orbits the nucleus of an atom and determines an element s chemical properties. lons of an
element have either a positive or negative charge depending on the number of protons and
electronsin the atom. The neutron, also located in the nucleus, has no electrical charge.
Atoms of the same element, which have a different number of neutrons, are called
isotopes. Isotopes have the same chemical properties; however, the nuclear properties can
be very different. For instance, some isotopes are inherently unstable due to the number of
neutronsin the nucleus. In the process of trying to become stable, these atoms emit energy
(radiation) in the form of apha particles, beta particles, neutrons, and gammaor x-rays (see
Figure 2.1)." lonization occurs when electrons are removed from aneutral atom by
radiation with sufficient energy to remove an electron from its orbit around the atom.
Plutonium and uranium, two of the elements that are commonly processed at TA-55, both

emit ionizing

"llustrations in Figures 2.1, 2.2, and 2.3 are provided courtesy of Jim Mahan and Tammy Tucker, Los
Alamos National Laboratory [33].
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radiation and require specia handling precautions and procedures to mitigate hazards to

radiation workers.

2.2  Biological Hazards of Radiation

Radiation causes damage to human tissue through ionization of the atomsin the
cells. The extent of the cellular damage depends on whether the nucleus or cytoplasmis
struck; an insult to the nucleus of acell may damage the DNA. lonizing radiation can aso
cause chemical reactions at the cellular level that may adversely affect tissues or organs.
Actively dividing cells such as those found in the bone marrow, intestinal tract, hair
follicles, and reproductive organs are more sensitive to radiation damage than brain or

muscle cdlls.
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There are four consequences of exposure to ionizing radiation, depending on the
length and the amount of exposure: (1) no cellular damage occurs,

(2) chromosomal damage occurs and is repaired by the cell, (3) chromosomal damage
occurs and the cell ceases to function properly, or (4) the cell dies. An acute whole-body
radiation dose results from alarge exposure in a short period of time. Usually thedoseis
overwhelming to the body, and it cannot repair itself. Symptoms may include reduced
blood count, hair loss, nausea, or in extreme circumstances, death. A chronic radiation
dose occursin small quantities over along period of time. An example of thisis naturaly
occuring background radiation such as cosmic radiation, terrestrial radiation, and radon.
Biological effects from a chronic radiation dose include somatic effects such as cancer and
genetic effects.

To minimize the biological effects of chronic radiation to individuals working with
nuclear materials, administrative limits for occupational doses havc been established. A dose
isdefined as the amount of energy per unit mass deposited in avolume of tissue [6]. The
radiation dose unit is rad (radiation absorbed dose) which only accounts for the amount of
radiation that is absorbed and not the type of radiation. A quality factor applied to the
measurement provides an equivalent measure that accounts for differencesin types of
radiation and the energy leve of theradiation. The roentgen equivaent man or radiation
equivalent in man (rem) is the unit for measuring radiation exposure to personnel. This
measure takes into account energy absorbed by the body and the potential biological effect
caused by different types of radiation. For example, the absorbed dose for an equal

11



amount of energy from gamma ray radiation and low-energy neutron radiation may each be
1 rad; however, the gammaray dose equivalent is 1 rem, and the neutron dose equivalent is
10 rem. The Department of Energy (DOE) occupational dose limit for aradiological worker
is2rem/year. The TA-55 administrative control limit for the pit fabrication areais 1.5
rem/year. Doses exceeding these levels do not necessarily result in biological damage to an

individua; these limits are strictly administrative goals.

2.3  Criticality

| sotopes such as 2°Pu, #*Pu, U, and **U are termed fissile materials. These
isotopes have the capability of undergoing afission process where the nucleus of the atomis
struck by a neutron and the neutron is absorbed. The nucleus breaks into two smaller parts,
and a tremendous amount of gamma radiation is released. The fission produces two or three
neutrons which strike other atoms. If sufficient fissile material (critical mass) is present, the
fission process continues and results in a chain reaction. If the chain reaction eventually
dissipates, because not every fission results in another, it istermed subcritical. If every
fission resultsin one other fission, the reactioniscritical. If every fission resultsin multiple
fissions, the reaction is supercritical.

A criticality event can release enough thermal energy to boil solutions, melt metals, or
cause explosions and fire. More importantly, the short-duration (milliseconds) burst of
neutrons and gammaraysis lethal to personnel in theimmediate vicinity. Proper handling
and storage of nuclear material is essential to prevent the occurrence of acriticality incident.
The primary mechanism for preventing a criticality accident isto engineer containers, tanks,
transportation devices, and storage facilities to reduce the chances nuclear material interaction.
Operationally, administrative controls limit the amount of nuclear material that is permitted in

acontainer, glovebox, transport device, or storage location [32].

12



Criticality safety limits are provided to radiological workers for any location where
fissle material could be present. These limits are specific to the form of material and the
location. The simulation model incorporates criticality limits by not allowing a quantity of
nuclear material that would exceed the limits to be present in any location. For example,
material transport devices can convey only one container of nuclear material, and cannot

deliver materia to alocation where nuclear material is present.

24  Radiation Safety

The four basic types of ionizing radiation of concern at TA-55 are apha particles,
beta particles, gamma or x-rays, and neutrons. Each type has distinct physical
characteristics, range, biological hazards, and safety precautions (see Figures 2.2 and 2.3).
An apha particle consists of 2 protons, 2 neutrons, and no electrons. The positive charge of
the particle causes it to ionize adjacent electrons and release alarge amount of energy ina
distance of 1to 2 inches. Alpha particles are not an external radiation hazard, because they
can be stopped by the epidermis. However, if an adpha particleisinhaled or ingested, it
becomes an internal source of exposure and can cause extensive damage to body tissue.

Precautions taken to prevent exposure

13
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to alpha particles include protective clothing, respirators, and materia handlingin a
contained environment.

The beta particleis negatively charged and is emitted from the nucleus of an atom.
It isphysically identical to an electron and resultsin ionization of adjacent atoms due to the
repulsive forces between the beta particle and the electron. The beta particle has alimited
penetrating ability of about 10 feet in air. This particle isan external hazard to the skin and
eyes, and becomes an internal hazard if ingested or inhaled. An additiona precaution to
prevent exposure to beta particlesis wearing specialized safety glasses.

Gamma and x-rays are similar, in that both types of radiation are electromagnetic
waves with no electrical charge. lonization occurs as adirect result of interaction with
electrons in adjacent atoms. Gamma/x-ray radiation can travel several hundred feet in air,
because it possesses no mass and the energy is transmitted to itstarget. Proximity to a
gammalx-ray source resultsin whole-body exposure to an individual. Shielding the source
with dense materials like lead or steel is one effective mechanism for minimizing exposure.
Another is minimizing the time spent near the source and/or maximizing the distance from
the source.

Neutron radiation results when neutrons are gected from the nucleus of an atom. A
collision between a neutron and the nucleus of another atom is a direct interaction; indirect
interaction occurs when a charged particle or other ionizing radiation is released during direct
interaction. This can causeionization in human tissue. Neutrons have a high penetrating
ability inair (several hundred feet), similar
to gammarays. Shielding against neutron radiation is best accomplished by using
moderating materials with a high hydrogen content such as water, polyethylene, concrete,

or neutron absorbing materials such as boron.

16



The primary objective of the optimization and simulation modelsisto produce a
layout of the foundry areathat minimizes exposure that radiation workers receive from
radioactive material contained in the gloveboxes and storage wells. Thisis accomplished
by maximizing the distance between high-exposure processes or those processes with a
relatively large amount of radiation worker attention time and minimizing the time the
workers handle the material. The simulation model tracks material movement and
handling time which aids in the comparison of layout configurations. Material located in
storage wells significantly contributes to the background radiation in the processing area.
The simulation also attempts to minimize interim storage in these wells. The objective of
minimizing exposures to radiological workersisin direct conflict with the objective of
maximizing throughput. Therefore, the throughput for alayout where exposures are

minimized indicates the capacity of the system and not the maximum throughput.
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Chapter 3
FACILITY LAYOUT AS A QUADRATIC ASSIGNMENT PROBLEM

3.1  Facility Layout Problem

The importance of the physical layout and design of a manufacturing process
cannot be underestimated. The efficiency of an operation depends on the proper utilization
of personnel and equipment, and the efficient movement and storage of materials.
Traditionally, facility layout has been accomplished manually by employing a cut-and-
paste approach [49] where permutations of alayout are explored by rearranging work
stations and equipment. This approach is effective when the number of locationsis small.
However, the number of alternative arrangementsis n!, where n = the number of available
sitesto locate afacility, department, workstation, or piece of equipment, and if n= 17, the
number of potential layoutsisin excess of 350 trillion. Clearly, thetrial and error approach
isnot feasible for determining the best solution.

Buffa[7] introduced a graphical approach to the facility layout problem (FLP) that
considers work flow between departments and attempts to locate those departmentsin
proximity to where the flow isrelatively large. Muther [36] developed another graphical
approach called Systematic Layout Planning (SLP) that incorporates subjective inter-
departmental relationships through the use of a closeness rating system. The limitations of
the graphical approaches as the problem size increases led to the development of a
multitude of computer applications for generating and evaluating aternative facility layouts.
Most of the computer-based facility-layout techniques can be categorized as either

quantitative, qualitative, or multi-criteria methods.
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3.1.1 Quantitative Methods

Koopmans and Beckman [26] were the first researchers to model the facility layout
problem as a Quadratic Assignment Problem (QAP), awell-known classical combinatorial
optimization problem. The problem involves the assignment of n distinct facilitieston
fixed locations to minimize the total material handling cost or flow between the facilities.
Facilities, locations, and materia flow are loosely defined to meet the context of the

particular problem application. A formulation of the problem by Lawler [29] is

=1t Fod ST (3.1)

) Jacy+a, fi=kand j=/,
ol - if i#korj=l,
(3.2
5. L. ZX_T =1, Vi,
=] (3.3

St (3.4)

(3.5)
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where,

a; = fixed cost of locating facility i at locationj ,
[« = flow of material (interaction) between facilitiesi and k, and
C; = cost of transporting material between locationsj and |.

Quadratic assignment formulations for the FLP vary according to the particular application.
These formulations may include distances between facilities, revenue (loss) from operating
afacility in aparticular location, identical flows between facilities, and cyclic operations.
Bazaraa [2] and Hillier and Connors [20] represented the FL P using a quadratic set
covering problem (QSP) by dividing the area under study into contiguous blocks and
assigning facilities to the blocks.

In addition to the QAP and QSP, there are numerous formulations of the FLP
using linear integer and mixed-integer programming [4,8,24,27,34]. Lawler [29]
formulated his approach to QAP using an equivalent integer programming problem.
By defining y,,, = X; Xy, (3.6)
where x; and X, are defined in Egs. (3.3) - (3.5) the objective function becomes:

(3.7)

- {/ﬂc}.«bau ifi=kand j=1,

llinies if i#korj#l,
(3.2)
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n o ~ n - (38)
5.1, Zl Z ; fT_I:yﬂ_,—'n‘.

X, +Xy -2y, 20 Vijkl
Yo €01}, Yijkl, (3.10)

(3.9)

where,

a, = fixed cost of locating facility / at location J,

f. = flow of matenal (interaction) between facilities / and &, and
¢, = cost of transporting material between locations j and /.

The above formulations assume that the number of facilities and locations are equal, and
that each facility will be assigned alocation, or aternatively, each location will have an
assigned facility. If the number of locationsis greater than the number of facilities,
inequalities can be introduced into the equations or dummy facilities can be added.
Lawler sformulation of the QAP has n2 xij variables and 2n constraints. His
equivalent integer programming formulation has n2 xij variables, n4 yijkl variables, and n4 +
2n + 1 constraints, as documented in Kusiak and Heragu [27]. An integer programming
formulation of the QAP used by Love and Wong [34] where locations are specified by
rectangular coordinates has n2 xij variables and n2 + 3n constraints. Computational
experience with the Love and Wong formulation indicates that the approach is not
appropriate for problems with more than eight facilities[27]. A mixed-integer linear
programming reformulation for the QAP was proposed by Kettani and Oral [25]. Thelr

approach linearizes the quadratic objective function and
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reduces the number of 0-1 integer variables. Results indicate that the reformulation can
accomodate a problem size of N=15 with two hours of CPU time required to produce a
solution.

Solution procedures for the FLP can be divided into two categories - optimal and
heuristic [39]. Two classes of the optimal algorithms are branch-and-bound and cutting-
plane. Examples of branch-and-bound techniques are those devel oped by
Lawler [29] and Kaku and Thompson [23]. Cutting-planes agorithms were devel oped by
Bazaraa and Sherali [4] and Burkard and Bonniger [9].

The QAP isadifficult combinatorial optimization problem belonging to the class of
NP-complete problems[17] which means that no deterministic algorithm has been found
to yield an optimal solution in a reasonable amount of time. Primary disadvantages of
optimal algorithms are their computational complexity and computer memory
requirements [8]; optimal algorithms have proven to be practical for only QAP problems
on the order of 15t0 20 [35] . Theintractability of many problemsled to the investigation
of heuristic algorithms for the solution of the QAP. Heuristic approaches vary widely
according to the application and author. Many approaches are problem-specific; others are
robust and applicable to awide variety of problems. Among the most significant
contributorsin thefield are Hillier and Connors [20], Heragu and Kusiak [19], Burkard
and Bonniger [9], Armour and Buffa[1], Bazarraand Kirca[3], and Vollman et al. [50].
Kusiak and Heragu [27] present a detailed review of both optimal and heuristic approaches
to the QAP.
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The most successful heuristics are those that yield near-optimal solutions and avoid getting
stuck in local optima. Traditionally, heuristic procedures were divided into two main
classes: construction and improvement. Construction algorithmsinvolve a serid
assignment of each facility to alocation until asolutionisbuilt. This processisthe basis
for construction algorithms devel oped by Hillier and Connors [20], Lee and Moore [30],
Seehof and Evans [43], and Scriabin and Vergin [42]. Improvement algorithms use an
initial solution to perform systematic pairwise or three-way exchanges between facilities
until the best solution is obtained. This process generates a solution that depends on the
initial solution and the procedure may get caught in local optima. An improvement
algorithm is the basis for the best known and most widely used facility layout program,
Coordinate Relative Allocation of Facilities Technique (CRAFT) developed by Armour
and Buffa[1] and Buffa[7].

A new class of algorithms experimentally proven to be effective at solving difficult
combinatorial problemsistermed evolutionary heuristics[35]. This classincludes
Boltzmann Machine, Evolution Strategy, Genetic Algorithms, MultiGreedy, Sampling and
Clustering, Simulated Annealing, Tabu Search, and Immune Networks. These algorithms
iterate to a sub-optimal solution given aninitial, randomly chosen solution or popul ation of
solutions. These heuristics use alimited amount of computing time and memory relative

to other traditional techniques and have been used to solve larger problems.

3.1.2 Qualitative Methods

The primary difficulty with a quantitative approach to solving the FLP isthe
assumption that the objective function is unidimensional which often requires that costs
must be assigned to intangible goals. Decision analysis of alternative layouts is frequently

performed in the context of conflicting requirements and regulations, limited resources, and
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inadequate data. Quantitative approaches do not consider qualitative interrel ationships
between operations. However, qualitative factors influencing alayout decision are
subjective and often conflicting. Without a systematic approach to the analysis, inaccuracy
and inconsistency in the decision process results [44].

Qualitative techniques are based on Muther s SLP system that assigns subjective
closeness ratings in the analysis of the problem. Qualititative factors that commonly
influence the assignment of facilities (or departments, etc.) to locations are safety
considerations, operating environment (noise, temperature, humidity, etc.), flexibility, and
aesthetics [39,44]. The closeness ratings are expressed in the following manner when

values are assigned to the factors [36,49]:

A Absolutely necessary
E Especially important
| Important

(0] Ordinary

U Unimportant

X Undesirable

Once values are assigned to the ratings, qualitative routines attempt to produce

arrangements where facilities are located together when proximity is important, and apart
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when distance is desirable. A commonly used program that establishes the
interrelationships between facilities and makes assignments based on the closeness ratings
in Computerized Relationship Layout Planning (CORELAP) [30]. This program selects
the facility (department, etc.) with the highest rating and places it in the center of the
layout. Subsequent facilities are added to the layout based on the relationships with the

already assigned layouts.

3.1.3 Multi-Criteria Methods

In most facility layout problems, the analytical methodol ogies for generating an
optimal or near-optimal solution are well researched and documented. However, in
practice, many nonquantifiable issues exist for which a quantitative technique is not
applicable. Conversely, most decisions regarding competing layout aternatives cannot be
based solely on qualitative aspects of the problem without considering quantitative work-
flow volume. An integrated approach combining the techniques for both quantitative and
qualitative analysesis appropriate.

Severa authors have developed multi-criteriamodels [22, 38, 39, 40, 44, 45, 49]
for the generation and eva uation of alternative facility layouts. Butler et a. [10] used a
quadratic integer goal programming model to determine configuration of services and bed
allocationin ahospital setting. Their model incorporates Lee s preemptive goal

programming where a hierarchy of priority levelsis established for multiple goals [31].
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Urban [49] demonstrated how to implement a multi-criteria model using existing software
(CRAFT) to solve the QAP by modifying the cost term. In Lawler sformulation, the cost
term bijkl of Eq. (3.2) is redefined when a closeness rating and arating factor are

incorporated into the work-flow volume:

{(f,. +wry)e,+a, ifi=kandj=I[,
alf:

(S +wry)e, ifigkorj#l,
(3.11)

where,
r,. = departmental interrelationship closeness rating, and

w = nonnegative weight reflecting importance of rating and work flow volume.

Work-flow volume is determined as usual. Urban assigned the closeness valuesin the
following manner: A=4, E=3, 1=2, O=1, U=0, and X=-1. He suggested that assigning a
negative value to facilitieswith X closeness ratings provided better separation in the find
layout. The weighting factor is extremely important when the qualitative costs are
incorporated into the work-flow volume. If the weights of the closeness ratings are too
small, the quantitative aspects of the cost function dominate. If the weights aretoo large,
the qualitative aspects of the problem overwhelm the quantitative ones. Experimentation is
often required to determine the appropriate values for the weights. Urban [48,49]
illustrated that afacility layout optimization model using multiple objectivesis possible and

practical for avariety of applications.
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3.2 TheQuadratic Assignment Formulation for the Foundry

The purpose of modeling the foundry as a QAP isto assign processes to glovebox
locations with the objective of minimizing exposures to radiation workers. By separating
high-radiation and/or high attention time processes, the background contribution to the
overall radiation exposure isreduced. The quadratic assignment formulation for the
foundry in Eqg. (3.12) isacompact form of Eq. (3.1). The coefficient, bijkl, is modified to
reflect radiation dose as the flow of material or interaction between processes. The cost
associated with locating a process at a particular location in the foundry is computed as the
summation of radiation exposures from each process i and the contribution of background
exposure from each process k adjacent to processi. Traditionally distance is an attenuating
factor in the cost calculation; here, it isareducing factor in that the cost termisinversely
proportional to the square of the distance. The omission of the integer variables, xij and
xKl, in the formulation are aresult of location assignments provided by the GA solution.
The solution accounts for the cross products xijxkl that have avalue of 1. The cross
products that equal 0 do not enter into the calculation. In the objective function, the fixed
cost of assigning a process to alocation is not considered. A cost value based on the

process-to-location assignment is computed separately and reported.

. Ly Tt at, ¢
min Z

I~ A=l ;,.dis(:(a,.a‘ )

(3.12)
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where,

nprocs = number of processes in the casting operation,

d. = radiation dose rate from processi received by worker at process k (mRem/hr),
at, = worker attended service time for process k (hours),

C = constant capacity of foundry,

(a, a,) = assigned location of processesi and k, and

dist’ (a, a.) = the distance (squared) between locations (ft?).

The following assumptions are used in the foundry QAP: (1) all gloveboxes are fully
loaded with nuclear materia at all times, (2) radiation dose rates and attention times are
specific to each process, and (3) distances between glovebox locations are fixed and are

process independent.
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Chapter 4

GENETIC ALGORITHMS AND THE OPTIMIZATION MODEL

4.1  Genetic Algorithms and Optimization

The term genetic algorithm suggests afamily of parallel, randomized-search
optimization heuristics that employ the mechanics of natural selection and natural geneticsto
evolve an optimal solution from a population of initia feasible solutions[21]. The QAPisa
difficult combinatoria problem that is known to be NP-complete [17]. Many heuristic and
enumerative schemes have been applied to the QAP with limited success. Enumerative
algorithms investigate the search space by evaluating an objective function at every point in
space; however, these search techniques are unsuitable for large problems due to
dimensionality concerns. Intuitively, random search procedures that search the solution
space and save the best solutions are an improvement over enumerative schemes, but in
practice, they too suffer from lack of efficiency. Evolutionary techniques such astabu search
and genetic algorithms have proven to be very effective in solving non-convex optimization
problems[11,13, 46] where determining the quality of solutionsis possible, but iterative
generation of improved solutionsis difficult using deterministic methods. Of the two

methods, genetic algorithms produce more diverse solutions because multiple pointsin the
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solution space are simultaneously explored. The purpose of the optimization model isto
produce a set of diverse solutions that can be examined by the simulation model.

Genetic algorithms differ from traditional optimization procedures in the three ways
[18]:
GAs use acoding of the parameter set to randomly perform an exploitive search of a
solution space.
A search is conducted simultaneously on a population of points, not a

single point.
The quality of a solution is determined directly by evaluating an objective function.

Clarification is needed on the goals of optimization before examining the
fundamentals of GAs and their implementation to the optimization of afacility layout
problem. Traditional solution procedures seek optimization through convergence to an
optimal point. Calculus-based procedures generate local optimain often noisy search
spaces. Enumerative schemes seek optimal solutions, but are hampered by the complexity
of aproblem. Complex systems often require satisficing or compromising optimality for
improvement. The facility layout problem lendsitself to performance improvement where

the solution obtained may be be competitive but sub-optimal.

4.2  Genetic Algorithm Terminology

The terminology used to describe GA structure and operatorsis borrowed
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from the biological paradigm of natural selection first specified by Holland [21]. GAs

share common features in generating solutions [46]:

1
2.

A set of feasible solutions, or population.

A process where parents are chosen from a population to breed and

produce offspring (reproduction).

A method where new solutions are obtained by recombining features from
multiple previous solutions (crossover).

A method where new solutions are obtained by randomly permuting previous
solutions (mutation).

Selection of individuals from the population with the best objective function
values (fitness evaluation).

Removal of individuals from the population (culling).

The primary data structure for a GA is the chromosome or string representation of

asingle solution. Each decision variable within the chromosome, or decision vector, is

referred to as a gene; the value of ageneiscaled an alele. The approachesto initiaizing

populations, reproduction, crossover and mutation, selection, and culling are as numerous

astheresearchersin the field. The encoding scheme used to represent solutions, to alarge

extent, determines the approach used. Genetic operators such as crossover and mutation

operate on the encoding of the solutions and not the solutions themselves. This distinction

profoundly affects the success of a GA application, because cleverly designed problem-

specific encoding schemes reduce the search space and aid in the efficiency in generating

new solutions.
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Fit chromosomes exhibit similarities between them. If acausal relationship exists between
the smilarities and the fitness, thisinformation can be exploited to guide a directed search
for improvement [18]. These similarities, called schemata, refer to a subset of
chromosomes with common genes at certain positions. A schemais a pattern of genes
that is matched between chromosomes. A schema has properties of defining length and
order that differentiate schemata. The defining length, denoted by &H) where H isthe
schema, is the distance between the first and last specific gene in the chromosome. The
order, denoted by o(H), is the number of specific positions of genes in the chromosome.
For example (using a binary encoding scheme for a chromosome), one schemais 011* 1*0
and a second schemais 1*1**** where“*” isinterpreted as dont care about value. The
first schema has a defining length, &H), of 6 and an order, o(H), of 5; the second schema
properties are 2 and 2 respectively. The Schema Theorem [18] or the Fundamental
Theorem of Genetic Algorithms[21] statesthat above-average schemata receive
exponentialy increasing trials in subsequent generations.  Shorter schema have a better
chance of surviving to the next generation, and are more desirable. The expected number of
aparticular schemaH in the next generation under reproduction, crossover, and mutation,

isgiven by

m{ H, t+1)2 m{ H,1)- s [1 i OL? "-’Uhan

f i (4.)

m(H . t),m(H,t+1) = the numbers of schema in population at
time ¢ and ¢ + 1, respectively,
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f(H) = the average fitness of the chromosomes representing schema H

attime 7,

f = the average fitness of the entire population,
p. = the probability of crossover, and
P. = the probability of mutation.

4.3 Random Keys
The application of a genetic algorithm to QAP begins with the development of a
chromosomal representation for the candidate solutions. The genetic algorithm generates
offspring by applying recombination and mutation operators to the encoded solutions;
however, use of atraditional operator may result in an infeasible solution.
Asanillustration, consider two permutations of aliteral encoding of an assignment of
facilitiesto locations. In Parent A, for example, facility 1 isassigned to location 1, facility
2 isassigned to location 4, facility 3 isassigned to location 3, etc. A crossover site at
position 3 has been randomly chosen.
Parent A: 143|625
ParentB: 132|465
The resulting offspring is:
Offspring A: 143465
OffspringB: 132625
Neither offspring is avalid solution because of the omission of one facility and the
duplication of another in each. Many authors have developed problem-specific
recombination operators which overcome the solution feasibility problem. Bean [5] and

Norman and Bean [37] proposed a method of chromosomal encoding
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that does not require a specialized representation for each problem variation. Random keys
is an agorithm specifically developed to address sequencing and optimization problems
such as multiple machine scheduling, vehicle routing, resource allocation, and the quadratic
assignment problem. Bean s approach has shown encouraging results for these classes of
problems.

The fundamental difference between the random keys approach and other
techniquesis the encoding of solutions using random uniform (0,1) variates. The values of
the keys are used to decode solutions. All genetic operations are performed on the keys.
The genetic algorithm searches the random variate space and not the literal space. Feasible
solutions are produced by mapping the random keys to points in the problem space. The
QAP can be represented by generating arandom uniform (0,1) variate for each facility to
be assigned. To convert the random key representation to aliteral solution, theindex of the
smallest random variable becomes the location assigned to the first facility, the index of the
second smallest random variable becomes the location assigned to the second facility, etc.
This sorting process continues until the index of the largest random variable is the location
assigned to the nth facility. For afive-facility problem, the chromosome (.78, .23, .58, .94,
12) represents (5, 2, 3, 1, 4). Thissequenceisinterpreted asfacility 1 assigned location 5,
facility 2 to location 2, etc.

Given two parents and site 3 randomly selected as the crossover site:

PA:.78 23 58 94 12 52314
PB:.46 .10 .07 97 51_3 2 15 4.

34



Crossover is performed and the following offspring are produced:
OA:.78 .23 58 97 51 25314
OB:.46 .10 .07 94 12_3 251 4.
Neither offspring is infeasible, because the crossover operation is performed on the

encoded solution and not the actual chromosome.

4.4  Implementation of the Genetic Algorithm

The solution procedure for the quadratic assignment formulation of Eq. (3.12),
which assigns processes to |ocations within the foundry, is based on Bean s random keys
approach. P.A. Djang and P.R. Finch developed Operator Tournament [15], arandom
keys software implementation which was used to construct the optimization model.
Empirical results on test QAP cases using Operator Tournament indicate that the results
produced by the software compare favorably to other evolutionary techniques such as
simulated annealing, tabu search, or pure genetic algorithms. Population initialization and
parent selection, genetic operators, and culling mechanisms are described in the following

sections as they are implemented in the software.

44.1 Parent Selection

The creation of aninitial population of solutionsisthe first step in the parent
selection process. The population isinitialized by generating chromosomes consisting of
randomly assigned genes. Often a heuristic is applied in this step to produce an intitial set
of good feasible solutions. Presumably, faster convergence to afinal solution will be
facilitated by anintelligent intialization process. Initidization of the populationin this

implementation was achieved by randomly generating a specified number of
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chromosomes. A heuristic added to initialize the population with a proposed layout
produced negligible results, and was later deleted.

The purpose of parent selection from a population is to increase the overall
probability that the most fit parents reproduce. Fitnessis based on a measure of goodness
determined by the value of the objective function. Parent selection based on fitness
increases the chance that chromosomes with better values will contribute offspring to the
next generation. One commonly used technique employs a biased roulette wheel parent
selection. Davis[12] outlines the algorithm for roulette wheel selection in Table4.1. The
analogy to aroulette wheel comes from the assignment of proportionally sized slotsto
members of the population. Although roulette wheel parent selection is random, each

parent s chance of being selected is proportional to its fitness.

4.4.2 Genetic Operators

Seven genetic operators are applied in the GA (in the order they are used): (1)
Bernoulli crossover, (2) Bernoulli mutation, (3) ssimple mutation, (4) two-point crossover,
(5) limited inversion, (6) inversion, and (7) four-point crossover. The following sections
demonstrate the application of the seven operators using two parent solutions that represent

the assignment of eight operations to eight locations,
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Table4.1 Roulette wheel parent selection

1. Sum thefitnesses of the population members; the
result isthe total fitness.

2. Generate arandom number r between 0 and the total
fitness.

3. Select the first population member whose fitness
summed with the fitnesses of the preceding
members, is greater or equal tor.

for example operation 1 is assigned to location 7, operation 2 is assigned to location 5, and
soon. All operators are applied to the random keys encoded solutions and not the literal
solutions. Again, the index of the smallest random variable (key) corresponds to the
location assignment for facility 1. The sorting of keys continues until the index of the
largest key becomes the location assignment for facility 8. The two parent solutions and

their random key representations are shown in Table 4.2.

Table4.2 Encoding Schemesfor Two Parents

== —_—

Literal encoding Random keys encoding
A 6(8]5 711148 (.53 |.27 1.94|.21 {.11 |.62 ].18

Parent

>d
LS

B

6|5|12]|20 92|59 |56 |8 |69 |.16 iﬂ

3
s e T

4.4.2.1 Recombination Operators
Crossover is the process where two parents exchange genetic materia to

produce an offspring chromosome. Thisis an extremely important operator in GA
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applications [12]. Many researchers claim that crossover differentiates GAs from other
optimization procedures and evolutionary techniques that exclusively employ mutation.
Crossover alows rapid recombination of desirable features in a manner that mutation
cannot. The operator can produce offspring that are radically different from their
parents; it acts to combine building blocks of good solutions from a diverse population.
Uniform or Bernoulli crossover is an operator that produces offspring by randomly
determining which parent will contribute each gene of the child. If pc= the probability of a
crossover, arandom uniform (0,1) variate rg is generated and compared to the value of pc.
If rg < pc, then Parent A contributes the gene to offspring A; otherwise, Parent B
contributes the gene. Offspring B is composed of the unused bits. An exampleisgivenin
Table 4.3. with pc = .54. Offspring A isdecoded to the solution (6 783 15 2 4).
Offspring B isdecoded as (15824 37 6).

Table4.3 Bernoulli crossover with p, = .54

==
random variater, | 43 | 81 | .06 | .53 | 69 | .12 | .57 | .29
Parent A 86 | .53 12719 | .21 |.11)]62].18
Parent B 20192 .59].56)] 88 | 69| .16 | .31
Offspring A 86| 92279488 .11].16].18
Offspring B 20| .53 |59 .56 .21 |.69] .62 | .31
e e ————— AR E o. ——— )
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In two-point crossover, two points on the parent chromosomes are randomly
selected as crossover sites. The parents exchange genes between crossover sitesto
produce two offspring. If crossover sites 2 and 6 are randomly chosen (as indicated by the

heavy lines), the crossover produces the offspring shown in Table 4.4.

Table 4.4 Two-point crossover with crossover sites2 and 6

R —
Parent A 86 | 531 27 | 94 | 2]
F;arcm B 201 92 59 | .56 | .88
Offspring A 86 | 53| .59 .56 .88
iOﬂ'spring B i:n 27 | 94 | .21

In this example of two-point crossover, Offspring A decodes to the solution (824376 1
5). Offspring B decodesto (6715382 4).

Four-point crossover isvery similar to two-point crossover, except that four
crossover sites are randomly chosen. Suppose crossover sites 1, 3, 5, and 7 are randomly
selected. The crossover operation results in the offspring shown in Table 4.5 (the
crossover sites are indicated by the heavy lines).

Offspring A representsthe solution (7853612 4). OffspringBis(61384275).

4.4.2.2 Reordering Operators

The inversion operator is used in GAs to obtain better ordering of genes, while

crossover operators recombine genes to produce better schemata. Inversion can
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Table4.5 Four-point crossover with crossover sites1, 3, 5, and7

Parent A 86] 531 27] 98] 21| 11 |62] 18
I Parent B 2010 92 | .59 56| .88 69 | .16 ] .31
| Offspring A 86| 92|59 94]21]69].16].18
{ Offspring B 20f53]|27] 56| 88]11]6]3]

reduce the defining length, d(H), of valuable schema. Inversion issimilar to 2-point
crossover in that two points along the chromosome are randomly chosen to split the
chromosome into three sections. Inversion will reverse the order of the genesin the cut
section. Parents do not exchange genetic material in simpleinversion. Table 4.6 illustrates
the inversion operation on Parent A with points 3 and 7 indicated by the heavy lines. In
this example offspring A decodesto alayout solution of

(58632417).

Table4.6 Inversion with inversion sites3 and 7

anm 8 .53 27] 94 21|.11 .62].18
Offspring A 86 53| 27] 62| 01|21 ] .94] 18

Limited inversion is an additional reordering operator used in Operator
Tournament. Two points are randomly selected to split the chromosome into
three partsasin simpleinversion. However, the inverted part is limited to one-third of the

total genesto reduce the amount of churn that occurs.
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4.4.2.3 Mutation Operators

Reproduction and crossover efficiently perform chromosomal recombination to
produce new fit population members. Sometimes important schemata are lost in the
process. The function of mutation in artificial genetic systemsisto protect against these
losses[18]. In GAs, mutation is the random alteration of agene. Mutation rates are small
in nature and similarly small in artificial systems, leading one to conclude that mutation
operators are secondary to crossover operators in genetic schemes. Mutation procedures
vary with problem-specific solution encoding schemes.

Table 4.7 demonstrates how a Bernoulli mutation is performed in this
implementation on a random keys chromosome. Given a chromosome of length n, the
probability of mutation p,,, and random uniform (0,1) variatesr,, whereg=1to

n, the geneis replaced by the value of the random variateif r, < p,, .

Table 4.7 Bernoulli mutation for p,, =.008

e e —
random variate r, 801 { 075 § .060 | 001 | 575 | 291 | 333 | 485 "
Parent A 86 53 27 94 21 1 62 18
Offspring A 86 53 27 001 21 A1 62 A8

The random keys representation of Parent A decodesto the solution (685327 14). The
mutation of one gene on the chromosome results in new solution

(46853271).
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In simple mutation, one gene is randomly selected from a chromosome and
replaced with arandom (0,1) valuer. The operation is shown in Table 4.8, assuming a

mutation of (randomly selected) gene5and r = .01.

Table 4.8 Simple mutation of gene5with r =.01

_— E———
[Parent A 3 T T [Tl [T T T T
l oftspring A 3 | T BT (T [l ) e [
L — ——_—

In this case, the mutation of one gene on the chromosome results in new solution

(56832714).

4.4.2.4 Population | mprovement

Elitism is a culling mechanism that preserves the best chromosomes from one
generation to the next; the fittest members of a population are copied to the next generation.
The pitfall of this method is premature convergence to a non-optimal solution. However,
introducing increased mutation rates maintains diversity for continued improvement and
reduces the chances of premature convergence.

Djang and Finch s Operator Tournament favors successful operators. Each genetic
operator isgiven at least one chance to contribute an offspring to the next generation. If an
operator performswaell, it is given additonal chancesto insert offspring into the succeeding

generation. Some operators may dominate production

of offspring in the first generations, but as the popul ation converges to a solution, this

effect is reduced.
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Each member of a population isranked by its fitness, or objective function value
(Eq. (3.12)). Often the best members of a population, or those with the best fitness
evaluations, fail to produce children in the succeeding generation. The implementation
eliminates this loss by employing parental hypersampling which pools offspring
chromosomes after all the operators have produced their alocation of chromosomes. The
parent population is compared to the population of children and the best chromosomes
from the two populations are retained [15]. In this manner, especialy fit parents may

survive several generations and may continue to generate better offspring.
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Chapter 5
PRODUCTION CAPABILITY - A SIMULATION MODEL

5.1  The Casting Process

A detailed analysis of the complex interactions of material, personnel, material
handling, and equipment in the casting operation cannot be represented in the formulation
of afacility layout problem aone. Without additional evaluation of the interrel ationships
between a proposed layout under certain operating conditions such as production
commitments, time constraints, personnel and equipment availability, and ionizing
radiation, it isimpossible to determine the production capability of the system. Simulation
isameans of evaluating alternative layouts within the framework of an operating process.

The casting operation consists of 11 processes located in sixteen gloveboxes as
shownin Table5.1. Thereareatotal of 17 gloveboxesin the foundry, including one
unused box that is not dedicated to aprocess. An overhead trolley system connects the two
glovebox lines and the storage vault, and is used to convey material bi-directionally. The
trolley system is connected to the glovebox lines through two dropboxes. Dropboxes are
used exclusively for passing material from one material transport device to another; no
nuclear material processing or storage occurs in either dropbox. Each of the four
trunklines containsits own material transport device that is capable of delivering material to

each of the gloveboxes as well asthe threeinterim
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Table5.1 Processeswithin the casting operation

[ PROCESSES QUITME 7 BOXES|
Material Preparation Hydraulic Press 1
Feed Casting Feed Casting Furnace 2
Part Casting Part Casting Furnace 3
Packaging Work Box 2
Heat Treat A Heat Treat Furnace 2
Heat Treat B Heat Treat Fumnace 1
Heat Treat C Heat Treat Furnace 1
Oxide Roast Oxide Roast Fumace 2
Density Pycnometer 1
Non-destructive Assay | Neutron Assay Instrument 1

storage wellslocated on each trunkline. All material is contained within the glovebox line
and is never handled externally to the gloveboxes or trunklines.

Two primary concurrent material flows occur in the casting operation - feed casting
and part casting. Auxiliary activities include interim and long-term storage of in-process
and completed parts, roasting of casting residues to oxides, non-destructive assay of
oxides, packaging of oxides, and preparation of samplesfor analytical chemistry. The

flowsheet for the casting operation is shown in Figure 5.1.

5.2  Model Design Considerations
An important aspect of designing amodel is determining the features of the
real-world system that need to be incorporated in the smulation. It is costly, and often

unnecessary, to include every aspect of the system under investigation. Law
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and Kelton [28] recommend some general guidelines for establishing the level of detail
required:

1. Define the issues of interest with the model users. Specify the performance
indicators that must be provided to allow the users to make decisions.
Determine how the model will be used and how often. A model is
constructed for a specific purpose and cannot accurately estimate measures
of performance for which it was not designed.

2. Consult experts of the system to determine the level of model detail.
Concentrate on the most important aspects of the system. Model only to
the level of detail that is consistent with the data available.

3. Start with asimple model and enhance it as required. Often, asimplified
model of a system can aid in the determination of what features are
important. This process reduces the chances of amajor rewrite.

Theintent of modeling the foundry at TA-55 isto determine (1) if the capacity of
the existing process areais sufficient to satisfy the requirements of the Stockpile
Stewardship and Management Program, and (2) that the baseline radiation exposure at a
given production capacity is within DOE guidelines. Additional issues to be addressed are
the utilization of the personnel assigned to the area, the utilization of the trolley system and
the trunkline material handling devices, the necessity for in-line interim storage areas, and

the utilization of key equipment. These model objectives were determined after many
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discussions with users and process experts. The model traces the movement of each entity
through each location or process in the foundry. This approach is necessary to calculate
personnel exposures from handling and storage of material and to ensure that criticality
limits are not violated during the simulated operations. The simulation model tracks the
progress of the casting processes every minute, since the process times for some
operations and material transport times are on the order of minutes, not hours.

The casting operation is considered to be a terminating, non-steady-state system. A
full shut-down of all processes occurs every six months when an inventory of all nuclear
material is conducted. The inventory process lasts for one month after which operations
commence from an empty-and-idle state. For thisreason, thereisnoinitial transient or

warmup period associated with the ssmulation of the foundry.

53  Simulation Model Structure
The simulation was devel oped using the PC-based version of SSIMAN V , a
simulation language by Systems Modeling Corporation. The model is constructed to

accept a solution from the output of the optimization model similar to the following:

12

l3|l4|l5|16|17
s ]i|s [2]3]7

4'5'6'7’8'9'10'”

Process | 3|
||5|I1i10|l7l1 IM

2
16 6

1
LLocation l 8 I

Here, process 1 or Material Preparation (from Table 5.1) is assigned to location 8, process

2 or Feed Casting 1 to location 16, etc. Solutions are presented to the model at run-time,
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and an input fileis created that is specific for that solution. Each of the top 10 solutions
from the optimization model was executed to obtain the output statistics necessary for the
analysis of the competing layouts. The simulation model is divided into four functional
components: (1) casting processes, (2) transportation of material, (3) interim storage of in-
process materials and retrieval from storage locations, and (4) personnel exposure

calculations.

5.3.1 Casting Processes

Two of the 11 processes in the casting operation, Material Preparation and
Packaging, are completely manual and, although, processing can occur on overtime if
necessary, all processing is assumed to occur on asingle shift. The remainder of the
processes can proceed unattended overnight and on the weekends when the facility is
closed once atechnician completes theinitial attended portion of the process. The
technicians assigned to the foundry are cross-trained to operate any glovebox equipment
and are not assigned to a specific process. When atechnician isnot being utilized in the
foundry, heis assigned to duties away from the processing area; however these job
functions are not included in the smulation model. Each of the 16 gloveboxesis
represented in SIMAN V asa STATION where avariety of processing steps can occur.

Figure 5.2 shows a simplified version of the representation of a casting process station.
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Figure5.2 Representation of a casting process station

Each processis represented by a station that is assigned to a particular location in
thefoundry. Material enters the station and waits in aqueue until atechnicianis available,
after which adelay isintroduced to represent the attended processing time. The technician
isthen released while the process proceeds unattended. Again, the technician is seized and
performs the task of unloading the material beforeit is sent to the next process. The
materia can follow severa paths depending on whether it is scrapped, fails and needs

rework, is divided into separate components, or needs further processing.
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5.3.2 Transportation of Material

Five material transport devices are located in the foundry, the semi-automatic
trolley system and four manual trunkline systems. Each device can only transport one
container of material at atime due to criticality concerns. Thirty-two transporter delivery
points consisting of 17 glovebox locations, 2 dropboxes, 12 storage wells, and a storage
vault. Connecting these delivery points are 118 bi-directional paths that material can
follow. Before material can be moved from one location to the next, a series of system

status conditions must be true:

1. Isaradiation worker available?

2 Is every transporter device that will be required available?

3 Isthe receiving location empty?

4, Does the pass-thru dropbox (Figure 1.1) have capacity for the item?
5 Isthe receiving location equipment unallocated?

An item can be scheduled to move to anew location only if each condition istrue. This
process results in long transportation delays between seemingly short distances. Figure 5.3
illustrates how (in general) the transportation of material from station to station is
implemented in SSIMAN V .

Once aprocessis completed, material is sent to atransporter queue where the
conditions for transportation are checked (SCAN block). If al conditions are true, the
entity seizes atechnician and allocates the destination glovebox equipment. An entity may

reguire as many as three transporters to reach its final destination; each
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Figure 5.3 Representation of material transportation

transporter is requested individually and the material isincrementally moved to drop points

until theitem arrives at the receiving station.

5.3.3 Interim Storage

Each trunkline contains three wells that are used as interim storage for in-process
material from the density glovebox and the three heat treat furnaces. Thethreewells
adjacent to the materia preparation glovebox are dedicated to that process, and cannot be
used as storage for other in-process material. This processing strategy accommodates
criticality limitsin the materia preparation glovebox, but often resultsin long

transportation times for material that must travel from a glovebox in one trunkline to a well
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location in another. The structure in the simulation model for retrieving items from awell

location or for storing materia in oneisillustrated in Figure 5.4.

stonng item in well
BRANCH |

— ol TRANSPORT
trunkiine 1 well empty

o schadule transporter
trunkline 2 well empty

trunkline 3 well empty
trunkline 4 well empty

retrieving dem from slorage wel for processing

o o b i)

find full well

trunkline 1 wedl "
o

trunkline 2 well
o schedule transporter
- trunkline 3 well

trunkline 4 well

Figure 5.4 Representation of interim storage

Material is sent to interim storage from material preparation and heat treat. The
simulation locates the closest empty well and schedules the material for transport. Iltems are
retrieved for processing from the well locations by material preparation and density. The

model finds awell that contains the material it needs, and removes the
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item from the particular well queue. It then schedules the material for transport to the

station.

5.3.4 Personnel Radiation Exposures

There are two components of the dosage cal culations, direct exposure from material
in the immediate working area and background radiation from material residing in adjacent
processing and storage locations. All dose calculations are based on a weighted average of
gamma and neutron doses for a particular matrix of nuclear material (metal, cast parts,
oxides, residues, etc.). Dose rates are taken from measurements of gamma and neutron
radiation made at the existing gloveboxes in the foundry. All measurements were
conducted at an operating distance of 30 centimeters from each glovebox. Differencesin
the dose rates can be attributed to the shielding on the individual gloveboxes and storage
well locations and the amount (and matrix) of nuclear material present in the various
locations. Background radiation exposure from nuclear material situated in adjacent
locations varies as the inverse square of the distance from the source. For example, given a
dose rate measurement of 5 mRem/hr taken at a glovebox and a distance of 10 feet
between gloveboxes, the dose rateis 5 /102 or .05 mRem/hr. The dose rates for the
individual glovebox processes used in the technician exposure calculations are listed in
Table5.2.

The exposure calculation in the smulation model takes a different form than that

of the optimization model objective function of Eq. (3.12). Each entity that
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Table5.2 Measured doserates at various locationsin the foundry

Dose rate (Re/hr)

Material Preparation 7
Feed Casting

| Part Casting
| Heat Treat A

| Heat Treat C
Oxide Roast
Density
Non-destructive Assay

5
3
2
3
Heat Treat B 3
3
b
4
5
5

l Wl Sloragc

flows through a process in the simulation model contributes an amount of radiation dose as

expressed in Eq. (5.1)

NeaTRies

ST AT(L/)SNMG, /) DR, j) +

o | =1

3 AT(i,j)SNM(e,,p,)DR(e, . p, )
1500, dist’ (a,,k)
(5.1)

where,

nentities = number of entities generated during a simulation run,
nprocs = number of processes performed per entity,

a = location assigned to processj,
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g = entity in location k,

p, = process to which location k is assigned,

@) = set of locations within 15 feet of process j wherej # k,
AT = worker attended service time (minutes),

S\M = amount of nuclear material (grams),

DR = radiation dose rate (mRem/gram-hr), and

dist? = distance (squared) between locations (ft?).

Thefirst term in the equation obtains the direct exposure from each process (i=k in
Eq. (3.12)). The second term, summed over locations k, adds the background radiation
exposure from material located in adjacent gloveboxes and storage locations (i kin

Eq. (3.12)).

54  Input and Output Data for a Stochastic Process

54.1 Simulation Input

Stochastic systems possess input parameters and, subsequently outputs, that exhibit

random behavior. Often the most difficult decision amodeler facesis determining the

appropriate method to represent input data. The decision to represent each datainput as

deterministic or probabilistic largely depends on availability and relevance to the purpose of

the moded!.

Input data for the casting operation was obtained from three sources:. (1) processing

information at the Rocky Flats Plant, (2) subject matter experts at Los Alamos, and (3)
desired operating parameters defined by the DOE. Inputs to the simulation model and

their representations are shown in Table 5.3.
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Table 5.3 Datainputsfor simulation modell nput Parameter

Input Parameter

| Number of technicians Deterministic
Number of gloveboxes Deterministic
Rework Probabilistic
Process times Probabilistic
Transportation times Probabilistic
Deterministic
| Nuclear material quantities Probabilistic
| Radiation dose calculations Deterministic
Probabilistic

Deterministic

Deterministic

5.4.2 Simulation Output

A simulation model mimics the complex dynamic behavior of a system over time
in order to estimate the true characteristics of the system. Recording
time-persistent and observational variablesis the mechanism for obtaining output data that
isused in the estimation of population parameters from sample data. Time-persistent
variables are those for which values are defined over time. For example, determining the
utilization of technicians requires both the knowledge of the random variable busy
technicians, which may take on different values over time and the time periods for which

each value persisted. Statistics based on observational variables are concerned only with
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the value of each observation, and not the time it occurred. An example of an observational
variableisthe time an item waits for amaterial transporter.

The capacity of the foundry is determined based on the assumption that two types
of weapon components will be fabricated during each 6-month time period. For the
purposes of this dissertation, these types will be identified as Type A and Type B. The
summation of Type A and Type B castings produced indicates the capacity of the system
given the input parameters listed in Table 5.3.

SIMAN V providesthe user with the ability to obtain output statistics for any
performance measure of interest. The drawback to this capability isthat the analyst is faced
with a daunting amount of data, and must decide between what is pertinent and what is
superfluous. The foundry model generated statistics on everything from queue sizes for
thetrolley system to the utilization of the trunkline transporters. In apractical sense, many
of the utilization statistics produced were used for determining processing bottlenecks.
Successive generations of the model incorporated this information to produce a ssmulation
that more accurately reflects the casting
operation. The output statistics that were used to distinguish differences in processing

strategies are shown in Table 5.4.

55  Statistical Analysisfor a Terminating System
Consider aordered set of events X, X,, ..., X, wherenisapositive integer. If the
outcome of each event is governed by random behavior, the series X, X,, ..., X, istermed a

stochastic process[16]. The single sequence of numbers assumed by a
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Table5.4 Measuresof performancefor the casting operation

Measure of Effectiveness Use Type
Casting capacity Primary MOE Observational
Background exposure Primary MOE Observational
Total exposure Secondary MOE Observational
Total transportation time Secondary MOE Observational
Technician utilization Secondary MOE Time-persistent
Equipment utilization Secondary MOE Time-persistent
Transporter utilization Secondary MOE Time-persistent
Time in system for feed casting Secondary MOE Observational
Time in system for Type A casting Secondary MOE Observational
Time in system for Type B casting Secondary MOE Observational

stochastic processis called aredization; if n — oo, then X assumes an infinite number of
values, resulting in an infinite number of realizations. Due to time and cost contraints, an
analyst cannot observe every event, but observing a subset of eventsisfeasible. This
subset, called atime series, isafinite realization of a stochastic process. Statistical
inferences about the underlying distribution concerning one event improve as the sample
sizeincreases. Similarly, statistical inferencesimprove for n events as the number of
observed time series or replicationsincrease. One replication represents one individual run

of asimulation experiment.
55.1 Point Estimates and Confidence Intervals

Performance measures for a simulation are dependent on the conditions under

which each replication of asimulation is executed [28]. Independenceis achieved by using
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different random numbers for each replication, a common feature in most smulation
languages. Another important consideration is the state of the system at the beginning of
each replication. Every replication must start from same the set of initial conditionsto
ensure that output variableswill be comparable. If X, isarandom variable defined on the
ith replication of n replications, and the X, s are comparable between replications, then the
X.'s are considered independent, identically distributed (11D) random variables.

Given aset of 11D random variables, one can obtain a point estimate and confidence

interval for the mean 1 = E(X). The sample mean

n (5.2)

isan unbiased point estimate of 1, given alarge number of independent replications
of the simulation experiments has been performed, each generatingan X(n). The sample

variance

-
" -

Z[X, - .T((n)]
§*(n) = = .

|

(5.3)

issimilarly an unbiased estimator of _ 2. Given a sample mean X(n) and a sample

variance S 2(n) computed from a sample of anormal population, a 100(1 - )% confidence

interval for pisgiven by
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(5.4)

The 100(1 - a)% applies only to a confidence interval computed for a single measure of
performance. More often, an experimenter is interested in simultaneoudly constructing
confidence intervals for multiple MOEs [28]. If there are k MOEs of interest, the
probability that al k of the confidence intervals will contain their true meansis expressed

by the Bonferroni inequality:

&

Plu, el foralls = 12,..k)21-Y a,
= (5.5)

The importance of the Bonferroni inequality in analyzing simulation output is the degree of
confidence one can place on the confidence intervals constructed for each MOE. If there
are three MOESs of interest, each constructed using _=.05 or a 95% confidence interval, one
can only conclude the probability isat least 1 - Y a; (for i=1 to 3) or 85% that all three
confidence intervals simultaneously contain the true means. If there are 10 MOEs, the
probability decreasesto (at least) 50%. Thisillustrates the importance of determining
which performance measures produce the most significant information in the analysis of a

simulation model.

5.5.2 Analysisof Variance
Anaysisof variance (ANOVA) refersto statistical procedures used for analyzing
experimental results when more than two treatments have been performed [14]. The

characteristic that is being studied for each treatment is referred to as the response. Inthe
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foundry simulation, one response is total castings produced. The treatments of the
experiment are the 10 layout configurations. The purpose for performing an analysis of
variance isto determine whether the differencesin the true average for each treatment or
level are statistically significant. The null hypothesis HO states that there are no differences
in the population means; the aternative hypothesis Hais that at least two of the means
differ. Given k treatments, the problem can be stated as.

HO: pl= p2= p3= eee =y versus H,: atleasttwo p’sdiffer.

X;; represents arandom variable from the jth replication of the ith treatment, and all
X;; s are assumed independent. Restricted to the case where the sample sizes for each
treatment are equd, let J = the total number of replications for each configurationand | =
the total number of configurations. The data set contains atotal of 1Jobservations. The

mean of the replications for the ith treatment or configuration is

J (5.7)

i (5.8)
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Two assumptions underlie the use of single-factor ANOVA: (1) the treatment
distributions are normal, and (2) the variances of the trestment distributions are equdl. If H,
istrue, each of the X;;'s should come from the same population distribution with mean pt
and variance 0°. The means for the samples, the X..’s, should be close to one another and
the grand mean, X.. . The statistic mean square for treatments or MSTr is an estimate of

o” based on the differences between the sample means. It isgiven by

[ ~-Y. ¥l
MSTr = J <Z'LX )_}

| I-1
‘ (5.9)

When MSTr =0, the X,.'sareequa. Asthedifference betweenthe X.'sbecomes
larger, thevalue of MSTr becomeslarger. The statistic is an unbiased estimator of ¢°
when H, istrue, but can overstate 6> when H, isfalse. The mean square for error or MSE
statistic is an unbiased estimator of o® whether H, istrue or false. Each sampleis assumed
to come from a population having the variance o ; this variance can be estimated by any of

the sample variances. The MSE statistic is defined as

! (5.10)

Theratio MSTr/MSE isthe value of arandom variable having a F distribution with
[-1and | (J-1) degrees of freedom. The null hypothesiswill be rejected if the computed
value of F exceeds the tabular value of F _,1-1,1 (J1) with significance level _. If the null
hypothesisis rgjected, supplementary methods can be used to determine which treatments

are significantly different [14].
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5.5.3 Selecting the Best Systems

The ANOVA of Section 5.5.2 is senditive to its equal variance assumption. If the

equal variance condition fails, another method is available providing the Xij s are normally

distributed. Law and Kelton [28] takes the analysis of alternative systems one step further

by ranking treatments according to a performance measure and sel ecting the m best out of

k dternatives.

The Law and Kelton method assumes independence of treatments and normality of

the X;’s, but most importantly, the variances, o; 2s, do not have to be known or equal.

This approach has three objectives.

1.

The probability of selecting a subset m of k treatments that contains the
smallest mean response will be greater than or equal to the probability
specified by the analyst, P*, which must be greater than m! (k-m)!/k!

If two means are very close (and in apractical sense, not significantly
different), the method must be robust enough to avoid making alarge
number of unnecessary replications to account for the difference between
the means.

The selected subset will contain, with probability P*, a system with an
expected response no greater than the expected response of the worst of the
m selected solutions + d*, where d* isauser-assigned indifference

amount.

The method is athree-step procedure. First, the procedureis initialized by taking a

sample of nO initia replications and calculating the sample means, X, (n,), and variances,
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S? (n,), for each of the k configurations. The variance estimates are used to determine the
total number of replications Ni needed to make a selection of the best m of k systemsin the

second step.

2 o2
N, = max {no - I[M” for i=12....k

e\
L, (5.11)

Here, hisatabular value based on the values of nO, P*, and k (the values of h can be found
in Appendices 10A and 10B in Law and Kelton [28]).

In the second step, Ni - N0 additional replications for each system are performed
and the k system means are calculated for the extrareplications. The final step involves
calculating the weighted means over al the replications, Ni. The weighted means serve as

the basis for system selection. The weights are calculated asfollows:

| r ( 4 b
w, =21y h-M [1 _L“_"L’(_d')]
.'\' \' n . h_ .g;(nu)

(5.12)

W,=1~-W,, fori=12,...k (5.13)
The weighted sample means are defined as

X,(N)=W,X"(n))+ W, XP(N, - ny). (5.14)
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where,

X'"(n,) is the mean of the ith system using 7, replications, and
X'P(N, ~ ny)is the mean of the ith system using N, - n, replications.

The selected subset is defined as the m systems with the smallest values of

X.(NJ's.
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Chapter 6
RESULTS

6.1  TheOptimization Model

Djang and Finch s GA implementation for the solution of the foundry QAP was
executed on a PC with a Pentium™ processor. A population size of 17 was used for 20
generations. The GA converged to a solution after 16 generations after approximately five
seconds of execution time. The implementation provides for dynamic assignment of
genetic operator contribution rate based on the success of each operator during the
evolutionary process. Thisfeature eliminates the need to a priori selection of crossover and
mutation rates [15].

Theinput parametersto the GA are (1) distance (in feet) between locationsin the
foundry, (2) radiation dose rate from each of the 16 processes, (3) attended service time for
each process, and (4) the constant expected production capacity for the foundry. The
fitness evaluation of EQ. (3.11) produces an exposure index for each configuration which is
used to rank the top solutions from the optimization model. This index represents an upper
bound on actua personnel exposures, because the valueis calculated using a full material
loading in each glovebox in the foundry. In addition to the exposure index calculation, a
cost is computed for each layout configuration. Some gloveboxes in the current
configuration of the foundry are prohibitively expensive to relocate due to size or
contamination concerns. Other gloveboxes are scheduled for decomissioning and
decontamination, and the cost to replace them is zero. The solution procedure considers
these relocation costs and assigns a cost term for each solution. No attempt is made to

minimize the costs; they are ssimply reported. The input parameters for the cal culation of
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relocation costs are original location assignment of each foundry process and the cost to
relocate (if any) each process.

The exposure indices and rel ocation costs associated with the top ten solutions
produced by the optimization model arelisted in Table 6.1. The assignment of locations to
processes for the top ten solutionsisillustrated in Table 6.2. For example, the solution 1

layout assigns material preparation to location 7, feed casting 1 to location 11, etc.

Table 6.1 Exposur e indices and relocation costsfor thetop ten solutions

Solution | Exposure Index Relocamﬂ

(Rem/worker) ($K)
1 2076 455
2 2.077 400
3 2,077 415
4 2.077 430
5 2.078 430
6 2078 430
7 2.078 430
8 2.078 415
9 2078 355
10 2.079 415
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Table6.2 Assignment of locations to processes within the foundry

——

Solution

Process 1 2 3 4 5 6 7 B 9 |10
Material Preparation 3 1 511 9 |17 |14 )| 7 7
Feed Casting 1 111 112 3 7 SHINSHII211 5B N1
Feed Casting 2 <IN TG BE2S 1 e I RTINS 11| 17
Shape Casting 1 S LA T A SR PO 1 BZU SN LS
Shape Casting 2 17115 | 1 1 7 8 1 9 |12 9
Shape Casting 3 4 |11 |15 |16 }16 | 2 7 i7]1 8 2
Packaging 1 138] 1 2 {118113113] 2 1 13| 4
Packaging 2 14114 |14 |14 | 14114 1415 1 14
Heat Treat A1 011213 ]|10| 6 |16 |16} 3 |10 3
Heat Treat A2 B 171 4 13 115 413113118 18
Heat Treat B Sl IO HASN G IATT I R3Sl s HIk2Z i1 110
Heat Treat C 12| 8 1121 4 |12 5§ |15] 5 |18] 5
Oxide Roast 1 6|9 |17|[S5|10|11] 4| 4 )17 |1
Oxide Roast 2 1 QU0 IEIT 2 1 8 6 8 | 12
Density 15 O U ESH ISR 8S 12 B 103 N1 113
Non-destructive Assay 9 |13]| 6 12| 9 |15 6 [12]|14] 6
Unused glovebox 31| 4 ]186

—

6.2  TheSimulation Model

Each of the ten top layout solutions generated by the optimization model was
presented to the simulation model. The simulation model is constructed to accept any
configuration solution at run-time. This feature eliminates the need to develop an
individual smulation for each configuration; however, solution-specific input files are
generated for each configuration. Set-up time for running each solution is on the order of
one hour; execution time for each replication of the simulation model is 11 seconds on a
PC with a Pentium processor.

The number of replications to be run for each configuration was determined by

iteration. Initially, 10 replications of the model were run. The confidence intervals were
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calculated and determined to be too large. Twenty replications provided an acceptable
confidence interval.

The time frame for the simulated system is 6 months: 5 months for production
and _month for inventory. The two primary measures of effectiveness are the number of
castings produced and the background radiation exposure per radiation worker. The
number of castings produced isindicative of the capacity of the foundry for a6 month time
period. Background radiation exposure is a component of total radiation exposure, andisa
function of the assignment of gloveboxesto locationsin the foundry. Radiation worker

exposures increase if high-dose-rate gloveboxes are located adjacent to each other.

6.2.1 Primary Measuresof Effectiveness

The two primary MOEs, castings produced and background exposure per radiation
worker (expressed in mRem), require testing for statistically significant differences between
the treatment means. The preferred method is ANOV A (described in Section 5.5.2) which
requires that the treatments are normally distributed with equal variances. Prior to
performing an ANOVA, tests were conducted to verify whether there was significant
evidence to deny either of these properties. The simulation output data for the two primary
MOEs for each of the 10 solutions (20 replications) are included in Appendix A.

Goodness-of-fit tests are used to evaluate if a set of empirical data statistically

differs from a specified theoretical distribution. The Kolmogorov-Smirnov (K-S) test is
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one goodness-of-fit test that measures the deviation of an observed sample distribution
from atheoretical distribution. The K-S test was performed on the 20 replication means
for each of the 10 layout of the two MOEs, castings produced and background exposure,
to determine if the sample distributions are normally distributed. For _=.05, al treatments
for the 2 MOEs passed the normality tests with one exception. Treatment 7 failed the
normality test for background exposure. Treatment (or solution) 8 failed the normality test
for castings produced, at _=.10.

The equal variance property was investigated by using an F-test on the variance
ratio of pairs of treatments for both MOEs. Two of the 45 pairsfailed at _=.05 for
castings produced, a reasonabl e result given that the expected failures under HO is greater
than two. Background exposures had 20 failures out of 45 pairs. The ANOVA test isnot
an appropriate choice as an analysis tool for this MOE given unequal variances between the
treatments.

A single-factor analysis of variance was performed for the MOE, castings
produced, to test HO that all layout configurations have the same mean casting

production. The ANOVA summary for castings produced is shown in Table 6.3.

Table 6.3 ANOVA for castings produced

Source of variation df  Mean Square F Fos 19190
Treatments (configurations) 9 MSTr=32094 MSTr/MSE= 1.88
Error 190 MSE=5957 553

71



Because the value of F calculated for castings produced, 0.553, did not exceed
F 5.0 100 = 1.88, H, isnot rejected at significance level .05. The differencesin means for
the number of castings produced for the 10 treatments do not differ significantly.

The analysis approach of Law and Kelton [28] described in Section 5.5.3 was used
for the MOE, background exposure. This method assumes that the treatments are
normally distributed; however, the procedure does not assume equal variances among the
treatments. Law and Kelton s approach is dependent on a computed sample size which is
sengitive to the total treatments considered. The initial 10 layout configurations were
reduced to the best five, to reduce the number of additional replications to be performed for
each treatment. Layouts 10, 5, 8, 9, and 1 were selected based on the lowest mean
background exposures for 20 replications. Solution 7 was omitted from consideration,
becauseit failed the K-Stest for normality. A sufficient number of good layouts were
available for analysis even with the omission.

Table 6.4 summarizes the computation of Ni and Xi(Ni) for each of the 5
configurations. The datafor Ni replications of each solution are in Appendix B. For the
anaysis, P* = .95, h=3.507, and d* = 1. Theranking of the top three of the five solutions
did not change with additional replications. The analysis determined that the top three

solutions are 10, 5, and 8.

6.2.2 Secondary Performance Measur es

Although these data are not considered in determining the optimal layout,
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Table 6.4 Determining Xi(Ni) for top 5 solutions

ISoluﬁon X (20) 1 S$3(20) N, | XP(N-20) XAN) |
10 17.88 1.332 16 17.88 17.88
5 19.50 2.377 30 19.85 19.39
- 20.44 10.78 133 20.63
9 22 .41 4.402 55 2222
1 22.61 9439 117 22.04

secondary performance measures are useful in developing an operating strategy for the
foundry. Total exposure per radiation worker (expressed in Rem) is one of the most
important statistics in analyzing the results of the smulation model. If the exposure per
worker exceeds allowable limits, alternative strategies must be developed for processing.
High total material transportation timesindicate inefficiencesin the individual layouts. The
amount of time that a component spendsin the foundry (from the time the feed material is
delivered until the finished unit is stored) is useful in materials requirements planning and
determining product mix. Planning for the efficient use of the resources requires
knowledge of operating parameters such as utilization of personnel and equipment.

Table 6.5 summarizes the average values of the secondary performance
measures for the three top solutions (layout configurations). The means were obtained
using al replications performed (Ni ) as aresult of the analysisin
Section 6.2.1. The performance measures summarized are (1) average exposure per

worker, (2) average material transport time, (3) average time in system for rods, type
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Table6.5 Summary of secondary performance measures

— =
Solution
Statistic 10 5 8
Exposure/worker (Rem) I.15 .15 HE
Material transport time {(minutes) 2290 1954 1890
Time in system (minutes):
rod castings 3406 3415 3423
type A castings 14720 14596 14652
type B castings 24923 24453 24990
Utilization (percent):
radiation worker 75 74 75
material preparation 74 74 74
density 15 15 15

A castings, and type B castings, (4) utilization of radiation workers, and (5) utilization of
two processes that were considered to be bottlenecks in the casting operation, material
preparation (press) and density. The data for the secondary performance measures are
included in Appendix C.

Radiation worker utilization was much higher than expected. For planning
purposes, personnel are generally assumed to be 50% utilized on the operating floor. This
allowstimefor related activities such as paperwork, training, meetings, vacation, and
employee development. The density utilization was much lower than anticipated; however,
all part castings are routed through density, and a pycnometer failure could cause extensive

delays. The sameistrue of the pressin material preparation.
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6.2.3 Selection of alayout configuration

The analysis of the performance measures for the simulation produced many
surprises. There were no discernable differences between the layout configurations for
capacity, total personnel exposure, process/equipment utilization, or radiation worker
utilization. A dtatistic that varied between solutions was transportation time. Although the
utilization of the transporters was very low (less than 2%), the simulation model
demonstrated that transporter grid-lock was a common occurrence. Therefore, the layout
configuration that minimizes material movements is one that minimizes transporter grid-
lock. Additionally, material flowing through the foundry isasmall fraction of the material
that utilizesthetrolley system. Materia aso flows from machining and assembly to the
storage vault viathe trolley.

The determination of the best layout configuration must take into account expert
knowledge of the system being studied in addition to the performance measures. Layout 5
was the most feasible layout from an operational standpoint. The primary casting furnaces
are located in close proximity to the material preparation glovebox. The three highest
radiation processes are located in the back of the room. Lastly, seldom used backup
gloveboxes are located in high-traffic trunklines, which frees up more interim storage for
highly utilized processes. The configuration of the foundry using solution 5isillustrated in
Figure 6.1.

A point estimate and confidence interval for the two MOEs (for solution 5) were
calculated using the fixed-sample-size procedure given in Egs. (5.2) - (5.4). The 95%

confidence intervals were computed usingn=30and _=.05asshownin
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Table 6.6. The meansfor the castings produced and background exposure were obtained

from 30 replications of the smulation.

Table6.6 Confidenceintervalsfor primary MOEsfor solution 5

Castings Background
Produced Exposure

(mRem/worker)

19.62 + .63

The mean for the background exposure is not the same weighted mean calculated for the
solution comparison procedurein Table 6.4. Note that simultaneous confidence intervals
were constructed for the primary MOEs. The Bonferroni inequality (Eg. 5.5) states that if
confidence intervals are constructed for two measures of performance, then the probability
that each of the intervals contains its true measure is greater or equal to 100(1- 2a) or 90%.
An additional finding from the simulation model was the need for additional in-
process storage. The first simulation models were constructed without in-line storage
wells, and the results were similar to the transporter grid-lock experienced. One of the
operating parameters for the model was the elimination of bagouts for
in-process material. Bagouts are the process of removing nuclear material from a
glovebox line resulting in additional processing time, waste generation, and exposure.

In-line storage mitigates the need for bagouts by providing alocation to place
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material (within criticality limits) until the next processis available. The current ssimulation
model incorporates twelve storage wells; however, the ssmulation model proved more
interim storage locations are needed to accomodate the quantities of nuclear material

present in the system at agiven time.
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Chapter 7
CONCLUSIONS AND FUTURE DIRECTIONS

This chapter concludes this work with a discussion of the effectiveness of the
methodol ogies devel oped to simulate the foundry, the major contributions of the research,
and future directions for research. Section 7.1 provides an assessment of the results.
Section 7.2 summarizes the contributions. The final section presents an area that warrants

future study and evaluation.

7.1  Assessment of Results

The function of the integrative modeling approach wasto first produce a set of
good layout configurations subject to the constraints imposed by the problem formulation
and then to assess the merits of each configuration. The GA produced 10 layouts with
excellent features where exposures are minimized. Establishing a set of layout
configurations by relying solely on the experience of process expertsis not the best
procedure to follow, because the operating parameters for the future casting operation do
not reflect operating scenarios of the past. 1n Chapter 6, layout configuration number 5
was chosen to be a candidate for the proposed layout of the foundry based on the statistical
tests performed. The final layout will be determined
by examining the features of each of the top configurations and combining the best of the

features.
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The exposure index generated for each layout configuration by the optimization model
represents the worst case exposure per radiation worker in the foundry. The index was
did not reflect the value obtained in the simulation model for exposure per worker or the
final ranking of solutions. Thisis dueto the lack of variability in the computation of
exposures by the fitness evaluation as opposed to the dose calculation of the smulation
model. Figure 7.1 depicts a glovebox with adjacent boxes and well locations (designated

by letters).

R

Figure 7.1 Section of trunkline showing adjacent locations

If the fitness eval uation computes the exposure to a technician operating at
glovebox A, the dose would be calculated as though locations B, C, D, E, F, and G were
each producing a maximum background exposure for the duration of the attended process
at A. The simulation model calculates the exposures due to adjacent locations based on the
nuclear materia that is actually present in the other locations during the operation at

glovebox A. Thus, if nuclear material isonly present in well locations B, C, and D, thereis
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no dose contribution from locations E, F, and G. A method for introducing variability into
the optimization model to more closely represent what occurs in the ssmulation model isto
define probabilities of material being present at agiven location. The output from the

simulation model providesinsight into the appropriate values for the probabilities.

7.2  Research Contributions

In this dissertation we have investigated the effectiveness of a dual-model approach
to simulating a casting operation at a nuclear facility. No attempt was made to evaluateif a
GA methodology is the best solution search paradigm for the QAP; however, the GA
produced a set of good, practical layout solutionsin less than five seconds of execution
time. The representation of the foundry involved devel oping two models: (1) an
optimization model that produces a set of optimal layout configurations, and (2) a
simulation model that determines the effect that the physical layout of the processing area
has on system response. The complexity of the casting operation necessitates the use of an
integrative approach. The two models have very different objectives, formulations, and
data requirements.

The attractiveness (and necessity) of using an optimization model to generate
solutions for presentation to the simulation model is three-fold. First, producing feasible
solutions manually based on expert knowledge is a tedious process and subject to biased
judgement that may result in duplicating previous layout inefficiencies. Thiswas

demonstrated through multiple attempts at optimization of afoundry layout by process
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expertsat TA-55. Optimization of facility layout by computer ssimulation requires time-
consuming iterations as processing inefficiencies and violation of constraints are
discovered. Itisimpractical to perform asearch of the solution space using a simulation
model given the amount of time that is required to run even one configuration. Second, as
explained in Section 7.1, an optimization model aone cannot adequately account for the
interactions that produce radiation exposure.

Third, smulation models are useful in performing what-if analyseswhere
operation and transportation times, resource allocations, and failure rates are modified to
study the effects on system response. However, if the basic premise behind an optimal
layout of afacility is altered, acomplete rewrite of asimulation mode is often required.

For example, the layout of the foundry was optimized on personnel radiation exposures. |If
a subsequent decision was made to optimize the layout for process efficiency, the operating
assumptions would change, and the resulting layout could be very different. An
optimization routine is easily modified by changing the objective function and/or the
contraints The ssimulation model remains intact.

Analysis of competing facility layout configurations based on different optimizing
assumptionsisfacilitated using an integrative approach to modeling The methodology
investigated in this dissertation can be applied to any complex operation where
communication between processes or facilitiesisimportant. Whether the degree of
interaction between operations directly affects costs or often non-quantifiable concerns such
as safety, an optimal facility layout resultsin the most efficient use of the resources

available.
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7.3  FutureResearch

Assessment of risks associated with individual processes performed at a nuclear
facility isan important aspect in designing the layout of an operation. The objective
function of the QAP for the foundry seeks to minimize exposures by locating high
exposure processes apart from one another. An alternative objective isto minimize the
probability of loss or injury by locating processes having an inherently high degree of risk
away from those processes that would compound the risk. Consider an glovebox
containing afurnace wherefireis an identifiable hazard and a second glovebox where
combustible materials are routinely processed or stored. Placing these gloveboxes adjacent
to one another might result in greater lossin the event of an accident than if they were
Separated.

Sage [41] definesrisk as ...the statistical likelihood of being adversely affected by
some potentially hazardous event. Thus, risk involves measures of probability and severity
of adverseimpacts. There are numerous hazards associated with glovebox operationsin
the foundry, each having an assigned probability of occurrence and severity of impact.
Some of the more common accident scenarios are listed in Table 7.1.

Urban [49] incorporates Muther s SLP system [36] which uses subjective

closeness ratings to account for qualitative factors such as safety and environmental

83



Table 7.1 Accident scenariosfor the casting operation

Lvent Severity | Probability

Glovebox breach Low Very High
Loss of ventilation Moderate Moderate
Fire High Low

Criticality Very High | Very Low
Plenum breach Moderate | Very Low
High exposure material present Low Very High

S VAT R

considerations into the formulation of the QAP (see 3.1.2). This multi-criteria approach
produces afacility arrangement that locates operations based on proximity desirability.
Closeness ratings are usually subjective measures, and in apractical sense, difficult to
establish.  Urban requires that Muther s linguistic closeness ratings, which range from
absolutely necessary to undesirable, be assigned numerical values for incorporation into
the QAP formulation. In anuclear facility, where the implications of placing risky
operations adjacent to each other far exceed undesirable, development of closeness ratings

requires amore rigorous analysis.

7.3.1 Fuzzy Logic

The descriptors of the ranges of severity and probability of occurrence of the
scenarios listed in Table 7.1, illustrate the vague and imprecise nature of assigning risk.
Doesthe statement that thereisan high probability of abreach in containment indicate a
75% chance or a 90% chance of occurrence? Fuzzy logic is concerned with quantifying
and reasoning using natural language where descriptors are inexact. The notion behind
fuzzy systemsisthe construction of membership sets onto which inputs and outputs are

mapped. Degree of membership, i, takes on avalue on the real range [0.0, 1.0] where 0
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indicates null membership and 1 isfull membership. The premise behind fuzzy set theory
isthat control variables can belong to more than one membership set. The membership
sets comprise the fuzzifier which converts crisp valuesto fuzzy values. The fuzzy values
are processed by arule base consisting of a series of IF-THEN statements that model
reasoning by duplicating the decision process of experts. Boolean logic operators such as
AND, OR, and NOT are used to form the antecedent and consequent portions of the rules
which provides much flexibility in modeling the decision process. Every activated rulein
the rule base generates a fuzzy output which is essentially a recommendation for action.
The defuzzifier weights the output values and assigns a crisp output usualy by the centroid

method (for discrete elements) defined as:

ZP C,

I = 1=

ZP:’
i=1

(7.1)

7.3.2 Application of Fuzzy Logic for Risk Assessment
One method for incorporating fuzzy logic into hazards assessment is to construct
three membership functions - probability of occurrence and severity asinputs, and risk as

output. Figures7.2, 7.3, and 7.4 illustrate the input and output fuzzy setsfor the system.
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In the fuzzy sets, triangular membership functions map the
inputs, probability and severity, and output, risk to the following overlapping fuzzy sets.
very low VL, low L, moderate M, high H, and very high VH.

Consider a case where the probability of an event occurring is .60 and the severity
of that event is assessed as .5, the problem becomes one of determining the level of risk
associated with the occurrence of the event. Figure 7.2 illustrates the
degree of membership where a probability of .60 mapsto uM= .25 and puH=.09.
Similarly, a severity of .5 (in Figure 7.3) maps to uM= .45 and pH=.05. The

recommended action is the output value that corresponds to p=1 in the linguistic set.
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Figure 7.2 Fuzzy set for probability

86



1
s (i
=
Fa
:

0.5
E 45
o
g 05
2 0.0

0.0 0.5 1.0

Severity
Figure 7.3 Fuzzy set for severity
L M H VH

10
R
5 05
P
o
&
2 00 '

0.0 40 0.5 68 1.0

Risk

Figure 7.4 Fuzzy set for risk

87



For the output, risk, L = 0.0, M = 0.40, H = 0.68, and VH = 1.0. Table 7.2 definesthe

membership values of the the inputs as they are mapped to the linguistic sets.

Table 7.2 Membership valuesfor input and output variables

I, occurrence=.60 | severity=.50
Fvi 0.0

™ 0.0 0.0

Th 0.25 0.45

My 0.09 0.05

Hyy 0.0 0.0

A rule base consists of a series of rules depicting the causal relationships between

the inputs and output. A samplerule base for this exampleis:

Rule 1: IF probability = very high AND severity = low THEN risk = moderate.
Rule 2: IF probability = moderate AND severity = moderate THEN risk = moderate.
Rule 3: IF probability = low AND severity = high THEN risk = high.

Rule 4: |F probability = very low AND severity = very high THEN risk = high.

The fuzzy input variables are presented to the rule base which produces a degree of

membership for each rule. A crisp output is produced using the centroid method of Eq.

(7.1). Table 7.3 summarizesthe calculations.
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Table 7.3 Calculating a crisp output value
—_ = _— — -
r C, Ho By M, nC,
Rule] |IM=040 [VH=00 |L=00 |min{0.0,0.0}=0.0 (0.0)0.40)=0.0
Rule2 (M=040 [ M=025 [M=045 | min{0.25,0.45) =0.25 | (0.25X0.40)=0.10

Rule3 |H=068 |L=00 |H=005 | min{0.0,0.05}=0.0 (0.0)(0.68)=0.0
Rule4 |H=068 |VL=00 | VH=0.0 | min{0.0,0.0) =0.0 (0.0X0.68) = 0.0

|

output = 0. 10 /(0.0 + 010+ 00+ 00) =040 moderate risk Total 0.10
——— e e—

—=

7.3.3 Fuzzy Logic and the QAP

Every glovebox operation has an associated number of hazards (each with its own
degree of risk). The summation of the individual risks represents the total risk for the
process. A formulation of a QAP where the objective isto maximize the distance between

hazardous operations or minimize overal risk is given by

* ks

aprocy Z Tar

. k= ral
min e ————
; dist’(a,.ai)

(7.2)
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The resulting solution procedure for the QAP integrates a fuzzy logic paradigm for
risk assessment with a genetic algorithm containing a fitness function that minimizes risk.
The GA seeksto locate adjacent processes in amanner that reduces the hazards associated
with the casting operation. The simulation model can then determine the impact that

alternative layouts have on performance measures for the foundry.
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Solution 1

Castings Background
Replication Produced Exposure (mRem)
1 53 22.49
2 55 2080
3 53 25.38
4 54 26.06
5 52 22.88
6 53 22.89
7 49 17.87
8 50 18.66
8 60 25.88
10 57 21.68
11 52 23.23
12 51 24.33
13 54 20.65
14 57 17.64
15 50 24.59
16 55 2692
17 54 21.25
18 49 19.61
19 52 20.88
20 56 28.75
mean 53.30 22.61
vatiance 8.22 . 9.44
std dev 2.87 3.07

9



Soclution 2

Castings Background
Replication Produced Exposure (mRem)
1 59 27.83
2 49 2569
3 55 28.05
4 53 28.33
5 54 27.66
6 53 26.99
7 53 26.60
8 52 - 27.95
g 55 2812
10 56 28.54
11 g8 27.31
12 54 27587
13 56 28.75
14 55 27.67
15 55 28.93
18 52 28.30
17 52 27.18
18 53 28.49
19 51 28.70
20 52 28.49
mean 53.75 27.81
variance 4.93 0.80
std dev 222 0.89
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Solution 3

Castings Background
Replication Produced Exposure (mRem)
1 51 28.76
2 52 2654
3 54 30.88
4 50 27.84
5 56 26.01
6 53 26.02
7 54 31.63
8 54 29.74
g 52 27.83
10 53 24.98
11 55 29.69
12 56 23.18
13 57 31.85
14 56 32.85
16 52 27.35
16 56 30.48
17 60 33.40
18 57 28.28
10 52 2747
20 56 26.57
mean 54.35 28.57
variance 592 7.39
std dev 2.43 272
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Solution 4

Castings Background
Replication Produced Exposure (mRem)
1 57 29.93
2 57 2510
3 53 25.66
4 55 28.29
5 49 26.53
8 58 26.77
7 50 31.30
8 58 22.98
9 51 25.00
10 49 25.65
11 50 23.92
12 54 27.59
13 52 29.26
14 50 25.61
18 58 20.70
16 55 2562
17 56 31.18
18 53 26.71
19 52 ~7.75
20 56 3243
mean £3.55 27.35
variance 2.31 6.72
std dey 3.05 2.59
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Solution 5

Castings Background
Replication  Produced Exposure {(mRem)
1 56 17.44
2 55 2087
3 54 18.53
4 57 20.13
5 53 19.97
6 54 19.05
7 54 2149
8 52 18.59
9 57 18.28
10 58 20.97
11 50 2212
12 53 20.50
13 53 18.44
14 57 18.71
15 56 19.02
16 58 19.60
17 53 20.40
18 54 16.65
19 55 21.42
20 53 18.75
mean 54.60 19.50
variance 4.57 2.38
sid dev 2.14 154
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Solution 6

Castings Background
Replication  Produced Exposure (mRem)
1 82 2566
2 54 27.07
3 53 27.25
4 54 25.86
5 54 26.52
6 85 27.54
7 50 28.64
8 51 26.28
9 55 26.92
10 54 28.52
11 50 25.71
12 52 24.33
13 55 25.38
14 55 28.65
i5 56 27.32
16 55 24.14
17 83 2445
18 58 27.01
19 56 24.82
20 53 26.39
mean 53.75 28.32
variance 4.20 1.68
std dev 2.05 1.30
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Solution 7

Castings Background
Replication Produced Exposure (mRem)
1 55 18.74
2 49 16.72
3 55 24 .15
4 52 19.38
5 57 2094
o) 57 17.60
7 54 23.84
8 51 17.35
9 52 19.85
10 52 17.22
" 53 18.76
12 56 17.60
13 55 17.580
14 58 18.70
15 56 22.49
16 &6 18.89
17 49 16.64
18 55 17.22
19 54 17.68
20 52 19.02
mean 53.90 19.07
variance 6.62 5.00
std dev 2.57 2.24

s ¥ -.ai~T
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Solution 8

Castings Background
Replication Produced Exposure (mRem)
1 53 21.34
2 53 15.59
3 55 24.93
4 55 16.86
5 49 16.85
6 852 18.85
7 54 20.31
8 52 17.59
g 55 18.97
10 58 2417
11 58 2555
12 56 17.35
13 57 23.34
14 55 17.32
15 54 17.75
16 53 19.37
17 54 21.13
18 54 22.22
18 55 2640
20 54 22.98
mean 54.15 20.44
variance 371 - 10.78
std dev 1.83 3.28
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Solution 9

Castings Background
Replication Produced Exposure {mRem)
1 55 24 .59
2 55 22.66
3 52 22.72
4 55 21.90
5 £5 22.63
6 57 13,08
7 53 18.69
8 54 26.90
8 57 21.32
10 53 18.73
11 53 22.01
12 54 22.45
13 54 23.09
14 53 22.39
15 52 23.61
16 54 23.14
17 51 19.00
18 59 23.22
19 53 26.27
20 53 21.86
mean 54.10 22.41
variance - 367 4.40
std dev 1.92 2.10
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Solution 10

Castings Background
Replication  Produced Exposure (mRem)
1 g8 18.35
2z 50 i7.31
3 55 17.25
4 53 16.76
5 52 16.46
g 56 18.83
7 50 16.84
8 51 16.82
g 52 16.00
10 51 17.81
1" 57 18.25
12 53 19.78
13 48 16.30
14 50 18.46
15 55 17.96
16 54 16.88
17 55 2012
18 85 18.06
19 57 16.96
, 20 58 18.40
mean 53.50 17.89
variance 8.68 1.33
std dev 2.85 1.5

[y
=2
LN




APPENDIX B

RESULTS FOR BACKGROUND EXPOSURES WITH
ADDITIONAL REPLICATIONS



Replication

sk

MNMBEMMRNMNRMN@@ 4 2 a3 ek ok =
BN RENNN N I rwN R 0@@NOOABN

W G 93] [ARON A NS]

10
18.36
17.31
17.25
16.76
16.46
18.83
16.84
16.82
16.00
17.81
18.25
19.78
18.30
18.46
17.96
16.98
20.12
18.06
16.96

18.40

5
17.44
20.97
18.53
2013
16.97
19.05
21.49
18.59
19.28
20.97
2212
20.50

.18.44

18.71
19.02
19.60
20.40
16.65
21.42
186.75
2263
22.67
18.51
19.24
21.83
18.49
17.54
2099
17.98
18.56
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Solution
8
21.34
156.59
24.93
16.86
18.85
18.85
20.31
17.58
18.97
2417
25.55
17.35
23.34
17.32
17.75
19.37
21.13
22.22
26.40
22.98
26.47
19.48
19.10
2365
13.20
19.07
20.98
19.38
20.28

2379

2486
22.85
18.84
2073
20.48
19.31
21.15
18.53
2361
18.24

24.59
2266
22.72
21.80
2263
18.86
18.69
26.90
2132
19.73
22.01
22.45
23.08
2239
2361
23.14
18.00
23.22
26.27
21.86
21.08
2375
20.34
23.85
26.04
21.68
17.85
2207
20.57
20.99
21.10
2482

- 19.76

19.5¢
26.61
20.98
19.58
2296
24.31
23.64

22.49
20.60
25.38
26.06
22.88
17.87
1866
25.88
21.68
23.23
2433
2085
17.64
24.59
26.92
2125
19.61

20.88.

2875
22.89
2376
26.34
18.38
16.34
2312
22.83
27.76
18.52
27.60
22.42
2038
1872
19.67
2218
23.34
25.40
17.87
18.58
20.50
17.53



Replication
41
a2
43
44
45
45
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
&9
70
71
72
73
74
75
76
77
78
79
80

10

108

Solution

26.08
21.40
26.45
1590
18.91
2089
19.48
21.79
18.03
1927
20.35
18.81
26.11
20.49
26.47
28.08
21.79
18.73
16.93
19.27
16.01
16.86
2437
2041
21.39
14.35
17.33
23.25

T a1
LU O

23.11
2215
2238
19.17
19.14
20.28

_A7.79

20.58
2068
23.82
17.95

22.59
19.84
2037
23.36
21.73
26.62
21.44
22.07
2227
22.83
23.01
22.55
22.086
21.88
23.76

18.10
19.73
28.80
20.75
2161
21.32
18.79
21.89
19.17
2484
25.81
23.46
2803
25869
20.01
18.66
20.42
19.88

18.62

21.09
22.03
2347
22.28
23.07
2234
2407
26.37
20.52

~a

24.05
27.60
20.80
21.70
22.64
18.33
21.18
19.49
18.33
17.05
17.18
20.48



Replication
81
82
83
84
85
86
87
88
89
80
91
g2
93
94
85
86
97
98
89
100
101
102,
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

10

109

Solution
8
17.89
22.36
2377
18.18
19.60
21.39
21.37
22.36
2111
25.68
16.69
23.89
17.89

17.19
14 59

LR

21.79
20.25
16.20
23.33
23.25
18.58
20.82
16.21

ey s

23.41
18.02
18.93
23.41
21.23
20.94
23.08
18.62
2218
19.03
24.42
16.26
17.75
22.50
15.73
23.14
17.74

23.90
24.74
2202
17.80
22.41
26.53
19.58
22.31
2268
2548

3327

20.87

- 23.68

23.79
21.:
18.26
22.92
17.93
26.64
23.16
20.08
18.98
18.02
21.82
27.78
18.46
22.21
26.77
20.84
24.12
22.40
18.57
2223
19.44
17.93
2545
28.52



Replication
121
122
123
124
125
126
127
128
129
130
131
132
133

mean{ng )
variance(no )
std devin, )

mean(Ni - ny)
variance(Ni - np )
stddev(N; -ng )

W,
W
mean{i,)

10

17.88
1.33
1.15

17.88

18.50
2.38
1.54

19.85
3.98
1.99

1.33
033
19.39
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Solution
8
16.48
22.87
21.57
27.93
18.96
22.42
19.60
i9.684
24.46
19.68
24 92
18.83
15.74

20.44
10.78
3.28

20.83
8.96
299

0.3
0.7
20.57

22.41
4.40
2.10

2222
4.04
2.01

0.72
0.28
2235

2261
0.44
3.07

22.04
10.49
3.24

0.34
0.6e8
22.23
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RESULTS FOR SECONDARY PERFORMANCE MEASURES
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Solution 10

Total Total Time in System {(minutes) % Utilization
Exposure Transport Material
Raplicatlon (Rem/worker) Time (minutes) Rods Type A TypeB  Worker Preparation Density

1 1.14 2308 3913 14703 26465 73.22 72.66 15.05

2 1.14 2285 3225 15788 25837 75.35 74.09 14.46

3 1.15 2305 3601 15438 25227 74.88 73.78 15.02

4 1.14 2226 3406 14057 22005 73.32 73.90 13.41

5 1.15 2222 3151 14051 24645 73.2 74,16 13.15

6 1.16 2344 3612 14451 29919 76.52 73.69 15.49

7 1.15 2270 3626 14184 20802 73.53 7377 14.63

8 1.18 2268 3275 14452 23181 74.07 74.16 13.88

9 1.14 2219 3110 15319 20548 726 73.71 12.61
10 114 2249 3228 14778 21871 73.41 73.09 14.13

1 1.16 2314 3779 15357 22652 74.13 74,31 15.34
12 1.16 2291 3517 15243 25422 74.97 73.68 14.81
13 117 2269 3292 14418 31124 76.69 74.49 14,88
14 1.14 2286 3475 14039 22912 73.6 72,70 14.29
15 1.16 2340 3263 14993 25579 75.06 73,59 15.01
16 1.16 2299 3241 15155 23197 73.73 73.29 14.65
i7 146 2363 3640 14733 29165 76.22 73.48 18.17
18 1.16 2324 3118 14765 30167 7522 73.99 14.92
19 1.16 2316 3329 14636 23544 76.1 73.86 15.01
20 1.16 2265 3413 13841 24197 74.94 74.16 14.65
mean{20) 1.15 2290 3408 14720 24923 74,538 73.73 14,58
var{20) 8.71E-05 1616.80 49702.42 296E+05 971E+06  1.51 0.24 0.69

stddev(20)  9.33E-03 40.21 22294 54373 3116.72 1.23 0.49 0.83



€1l

Replication (Rem/worker) Time {minutes)

Total Total
Exposure Transport
1.15 1939
1.16 1951
1.16 1996
117 1957
1.15 1965
1.16 1973
1.16 1965
1.14 1941
115 1962
1:16 1958
1.16 1943
1.16 1936
1.15 1956
1.16 1944
116 1969
1.15 1946
1.16 1961
1.14 1945
115 1841
1.14 1929

Solution 5

Time in System {minutes)

Rods
3426
3458

2978

3634
3142
3585
3070

g -
3201

3695

3562

3287
3274
3178
3256
3630
3362
3473
3203
3238

Type A
14912
13911
14689
14308
15250
156176
14830
13677
14050
14537
13687
14410
14609
16079
14872
14849
14306
14747
14574
14878

Type B
19714
26566
28877
22681
22758
28206
29215
27039
23587
28259
26881
20264
22073
21541
26005
21676
26326
20438
21095
22148

% Utilization
Material

Worker Preparation Density

72.83
75.42
761
74.11
73.83
73.94
75.1
73.45
73.21
74.77
72.11
72.26
74.25
75.86
75.68
75,67
7425
72.89
73.16
76.12

73.82
73.29
73.97
74.64
73.24
73.96
73.11
73.73
73.46
73.95
74,78
73.86
73.36
73.69
74.29
73.09
73.45
7333
73.47.
73.19

14.03
14.89
16,15
14.89
15.01
15,66
14,81
14,04
15,34
16.30
14.13
13.50
14.68
14,11
15.11
14.64
15.01
13.98
14.45
13.82



P11l

21
22
23
24
25
26
27
28
29
30

meﬁn(m)
var(20)
stddev(20)

mean(10)
var{10)
stddev(10)

mean(30)
var{30)
stddev(30)

1.16
1.16
1.15
1.15
1,15
1:14
1.15
1.15
1.15
1.16

1.15
6.61E-05
8.13E-03

1.15
4.00E-05
6.32E-03

115
5.62E-05
7.50E-03

1973
1975
1937
1945
1970
1958
1940
1948
1953
1961

1954
244,99
156.65

1956
185.11
13.61

1954
219.06
14.80

Solution & (cont.)

3507 16032 31500
3471 15018 27567
3911 14537 21038
3892 14023 28305
3520 15364 23820
3024 14985 22030
3719 14598 22019
3583 13682 27239
3532 14112 22837
3320 14267 21886
3348 14568 24267
37967.65 2.12E+05 1.02E+07
194.85 46060  3199.05
3548 14652 24824
68402.63 5.17E+05 1.26E+07
261.54 719.02  3553.38
3416 14596 24453

55253.70 3.01E+05 1.07E+07

235.06

548.70

3270.29

76.46
77.12
73.03
75.27
75.68
73.89
73.84
72.85
7489
74.42

74.25
1.66
1.29

74.73
1,99
1.41

74.41
1.76
1.33

73.76
73.88
72.82
73.23
73.20
72,97
73.71
73.69
73,69
73.98

73.68
0.23
0.48

73.49
0.16
0.40

73.62
0.21
0.46

15.20
15.48
14.34
14.54
15.15
14.67
14.28
14.42
14.48
14.93

14.68
0.45
0.67

14.75
0.17
0.42

14.70
0.35
0.59



GIl

Replication (Rem/worker) Time (minutes)

Toiai

Totai

Exposure Transport
1.16 1900
1.12 1866
1.16 1898
1,16 1883
115 1862
1,15 1891
1.17 1915
1.15 1877
1.16 1880
1.15 1898
1.17 1930
1,14 1884
1.16 1882
115 1867
1.14 1887
114 1880
1.17 1903
1.18 1899
1,16 1903
1.16 1885

Solution 8

Time in System {minutes)

Rods
3337
3331

3433
3471

3770
3294
3508
3772
3435
3498
3003
3180
3223
3422
3505
3607
3800

anTA
(e T AN

3251
3352

% Utilization
Material

TypeA TypeB Worker Preparation Density

14909
13995
16300

. 14445
" 14585
13492

14503
14093
14591
14504

25113
22197
21516
22187
19508
24335
24574
27535
22108
26591

74.4
72.13
74.79
75.12
73.64
74.78
75.76
74.64
74,16
72.93
77.32
74.49
74.89
74,35
746
77.08
7277

I Eo
Q.90

74.65
74.25

73.74
72.68
73.38
73.67
73.74
73.88
74.54
73.92
73,98
72.39
73.79
73.03
73.37
73.55
72.86
73.44
74.46

- 07
3.0/

7412
74.41

15.11
13.41
14.80
14.56
13.47
15.03
15.24
14.31
14,07
14.88
15,59
14.65
14.43
14.15
15.13
14,72
15.20

A4 o

14.69
14.38
13.79



911

34
&1

22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43

A40AN
| I 1L

1898
1884
1892
1823
1876
1852
1863
1880
1906
1929
1897
1887
1883
1925
1871
1907
1862
1898
1887
1918
1906
1908

Solution 8 (cont.)

Aannny
(e i

3179
3283

3399
3782
3208
3449
3601
3314
3778
3340

3584

3357
3424
3119
3189
3541
3711
3652
3483

3422

3354
3145

B e

LW TaTo ]
DHUDT

25112
21285
26911
20197
23965
22740
23528
26576
26872
28154
28854
23911
27757
25424
20029
26097
22028
24821

25215
28027

el

24528
29695

¥ nm

7,30
73.08
76.5
74.4
73.25
73.85
72.66
74.2
75.99
76.47
75.12
75.66
73.63
75.46
76.31
74.47
76.58
74.31
74.2

73.43
7532

74.8
75.3

L T

3.9
74.04
73.55
73,23
73.55
73.07
73.61
73.39
7375
73.54
73.85
73.87
74.04
74.24
74.31
73.62
73.35
73.59
73.51
73.31

TA 17
[ e O BN 3

73.91
73.64

F.rr.y

10.90
15.20
14,99
14,87
12.44
13.64
13.18
13.95
14.68
1561
15.91
15.34
14.21
14.29
16.95
13.65
156.20
13.97
15.22
14.56

1R 2Q

[P Al

15.12
156.52



LIT

44
45
46
47
48
49
50
51
52
53
54
55

57
58
59
60
61
62
63
64

65

67

1.13
114
1.15
1.16
1.16
1.18
1,15
1.15
1.15
1.17
1.14
1,16
1.17
1.16
1,14
1.15
1.15
1.15
1.14
115

1.16

145
113
144

1861
1894
1881
1896
1885
1899
1864
1878
1892
1913
1898
1923
1935

1902
1857

LR 11

1862
1872
1837
1884
1905
1919
1871
1832
1857

Solution 8 {cont.)

3412
3493
3438
3294
3561
3716
3258
2991
3789
3373
3735
3595
3733
3676

R

[ LE L

3589
3448
3347
3561
2849
3450
3411
3766
3148

15294
14662
13571
14676
13635
12883
14150
15754
14515
14847
14503
14368
14619
14018

1A0TH

[ LW ¥ R

14910
14512
13999
14472
15708
14455
14170
14468
14261

18178
25267
26947
22918
24732
24968
23332
22799
22797
31902
22996
33795
32603
25053

21015

LT I

18839
22748
19333
21344
27912
25210
26165
18837
20565

7217
74.68
73.81
74.06
74.69
74.66
74,62
75.05
75.76
74.45
7476
76.36
76.62
76.17

7R R

f ot

73.83
73.7
74.01
74.29
78.28
76.15
72.72
71.76
72.11

73.09
72.99
73.98
74.25
74,36
72.84
74.19
73.52
73.42
74.08
73.33
73.61
73.59
73.48

72 £
RCI |

74.11
73.37
74.43
73.19
7330
74.33
73.53
73.26
72.89

13.59
14.45
14.25
14,56
14,51
15.60
13.96
14.28
15.29
14.89
14,97
15,61
16.07

15.89

19 R7
(R ey

14.15
1415
13.39
14,34
14,46
18.10
13.86
12.66
13.65



811

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
R’A

Lo

87
as
89
90
o1
o2

-~

Y3

1800
1887
1919
1894
1896

PRaYete)

1062
1889
1874
1895
1882
1891
1933
1847
1801
1807
1908
1875

1869
1800

et

1916
1875
1897
1940
1886
1878

1892

Solution 8 {cont.)

3302

3436
3474
3341,
3529

Yt atal

3580
3147
3207

3629

3180
3290
3301
3307
3285
3013
3809

3651 .

3507
268R7

s

3361
3665
3615
3474
3249
3894
3341

14041
13963
14781
14177
14770
14991
14452
16245
15535
15578
15252
14666
13798
15453
15400
14616
15207
15166

14714

[ ¥

14407
15065
15673
14349
14362
14542

PV

74.85
75.3
758
76.2

7416

74.52

74.99

76.07
76.4
736

74.02

75.03

74.19

75.64

74.41

74.92

7417

73.16

7562

76.19

7413

74.09

7563

74.92

73.93

74.94

72.89
73.07
73.45
72.79
7259
7247
73.92
73.47
73.76
73.67
7413
74.47
72.99
74.10
74.04
72.71
73.56
73.85

7388

o

74.59
7498
73.73
74.03
73.44
73.69
74.22

15.13
14.97
15.27
14,98
14,66
14.87
14:70
14,06
14,57
1411
14,80
16,22
1282
14.87
14,95
16,41
14.47

14,15
14 ER

L SRS

15.66
14.40
14.97
16.68
14.48
14.17
14.90
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94
95
26
97
g8
99
100
101
102
103
104
105
106
107
108
109
110
111

AAn
114

113
114
115
116
117
118
119

— e

O S T G P Gy
e a e A p
W~~~ POOO,

1891
1863
1911
1850
1867
1916
1898
1905
1875
1901
1882
1897
1861
1907
1913
1884
1890
1893

Annc
1IUo

1892
1922
1878
1919
1913
1859
1878

Solution 8 (cont.)

3621
3386
3355
3855
3502
3352
3720
3590
3474
3071
3351
3411
3485
3295
3584

3094

3142
3679

L te ~]
QLIO

2949
3531
3818
3490
3089
3680
3211

15379
14139
14011
16190

24296
20999
24829
22978
20878
25357
25855
23676
24525
23787
26589
25155
25528
32216
27160
24699
27977
25869

[p V=30 ly]
LU £

26549
27183
18365
24442
28438
23114
25836

74.31
76.85
73.05
74.93
75.39
75.23
74.03
75,21
74.65
74.57
74.49
77.69
74.03
75.93
75.84
75.23
76.09
75.71

TE A0
LR

77.44
75.81
7283
76.65
75.79
73.84
76.04

73.53
74.16
73.45
74.33
73.80
73.14
73.11
74,00
73.36
73.07
7384
73:79
73.97
73.25
73.13
74.05
73.61
73,71

P AD
213

73.09
73.50
73.72
74.27
74.19
73.05
73.48

14.69
1358
15.21
13.35
14.20
15.89
16.07
15.09
14.69
14.87
14.08
14.84
13.47
14.44
15.63
14.54
14.86
14.85

A £ M
10,07

14.80
16.31
14.02
15.86
15.54
14.13
14.08



0Z1

120
121
122
123
124
125
126
127
128
129
130
131
132
133

mean(20)
var{20)
stddev(20)

mean(113)
var{113)
stddev(113)

mean(133})
var{133)
stddev(133)

1.15
1.15
1.14
1.14
1.7
1,15
1,15
1.44
1.16
146
1.18
1.14
1.16
1.15

1.15
1.52E-04
1.23E-02

1.15
1.10E-04
1.06E-02

1.15
1.15E-04
1.07E-02

1884
1885
1898
1880
1925
1896
1501
1876
1869
1933
1874
1872
1874
1881

1889
278.05
16.67

1890
518,22
2276

1890
479.75
21.90

Solution 8 (cont.)

3541 21519
3520 14211 21708
3099 14980 29154
3080 15480 24320
3276 14778 - 33033
3348 14058 24220
3275 14626 26560
3340 14705 25055
3435 14981 24581
3523 13464 26031
3404 14046 23991
3147 14484 21499
3609 14412 23891
3237 15903 20583
3428 14667 24375
38850.60 4.99E+05 8.13E+06
19711 706.74  2850.49
3423 14650 25099
47710.08 3.81E+05 1.15E+07
21843  617.39  3389.92
3423 14652 24990

46076.61 3.95E+05 1.10E+07

21465

14480

628.77

3A14.75

73.65
727
76.68
75.65
73.95
72.81
75.34
74.66
7376
73.89

7417

99.05
73.78
73.13

74.52
1.57
1.25

76.02
6.72
2.59

74.94
596
2.44

73.83
73.21
73.01
73.22
73.55
73.30
73.72
73.25
74.21
7367
73.91
72.68
741
7375

73.64
0.33
0.58

73.62
022
0.47

73.63
0.23
0.48

14.51
14.80
14.47
13.78
15.81
14,17
15.32
13.94
13.89
16.17
13.91
13.57
14,20
13,72

14.59
0.35
0.59

14.67
0.69
0.83

14.65
0.64
0.80
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